Abstract
Glioblastoma (GBM) is one of the most devastating brain tumors with poor prognosis and high mortality. Although radical surgical treatment with subsequent radiation and chemotherapy can improve the survival, the efficacy of such regimens is insufficient because the GBM cells can spread and destroy normal brain structures. Moreover, these non-specific treatments may damage adjacent healthy brain tissue. It is thus imperative to develop novel therapies to precisely target invasive tumor cells without damaging normal tissues. Immunotherapy is a promising approach due to its capability to suppress the growth of various tumors in preclinical model and clinical trials. Adoptive cell therapy (ACT) using T cells engineered with chimeric antigen receptor (CAR) targeting an ideal molecular marker in GBM, e.g. epidermal growth factor receptor type III (EGFRvIII) has demonstrated a satisfactory efficacy in treating malignant brain tumors. Here we summarize the recent progresses in immunotherapeutic strategy using CAR-modified T cells oriented to EGFRvIII against GBM.
Keywords: EGFRvIII, chimeric antigen receptor, adoptive cell therapy, glioblastoma.
Current Pharmaceutical Design
Title:Anti-EGFRvIII Chimeric Antigen Receptor-Modified T Cells for Adoptive Cell Therapy of Glioblastoma
Volume: 23 Issue: 14
Author(s): Pei-pei Ren, Ming Li, Tian-fang Li and Shuang-yin Han*
Affiliation:
- Translational Research Center, People's Hospital of Henan Province, Zhengzhou University, Zhengzhou 450003,China
Keywords: EGFRvIII, chimeric antigen receptor, adoptive cell therapy, glioblastoma.
Abstract: Glioblastoma (GBM) is one of the most devastating brain tumors with poor prognosis and high mortality. Although radical surgical treatment with subsequent radiation and chemotherapy can improve the survival, the efficacy of such regimens is insufficient because the GBM cells can spread and destroy normal brain structures. Moreover, these non-specific treatments may damage adjacent healthy brain tissue. It is thus imperative to develop novel therapies to precisely target invasive tumor cells without damaging normal tissues. Immunotherapy is a promising approach due to its capability to suppress the growth of various tumors in preclinical model and clinical trials. Adoptive cell therapy (ACT) using T cells engineered with chimeric antigen receptor (CAR) targeting an ideal molecular marker in GBM, e.g. epidermal growth factor receptor type III (EGFRvIII) has demonstrated a satisfactory efficacy in treating malignant brain tumors. Here we summarize the recent progresses in immunotherapeutic strategy using CAR-modified T cells oriented to EGFRvIII against GBM.
Export Options
About this article
Cite this article as:
Ren Pei-pei, Li Ming, Li Tian-fang and Han Shuang-yin *, Anti-EGFRvIII Chimeric Antigen Receptor-Modified T Cells for Adoptive Cell Therapy of Glioblastoma, Current Pharmaceutical Design 2017; 23 (14) . https://dx.doi.org/10.2174/1381612823666170316125402
DOI https://dx.doi.org/10.2174/1381612823666170316125402 |
Print ISSN 1381-6128 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4286 |
Call for Papers in Thematic Issues
Blood-based biomarkers in large-scale screening for neurodegenerative diseases
Disease biomarkers are necessary tools that can be employ in several clinical context of use (COU), ranging from the (early) diagnosis, prognosis, prediction, to monitor of disease state and/or drug efficacy. Regarding neurodegenerative diseases, in particular Alzheimer’s disease (AD), a battery of well-validated biomarkers are available, such as cerebrospinal fluid ...read more
Diabetes mellitus: advances in diagnosis and treatment driving by precision medicine
Diabetes mellitus (DM) is a chronic degenerative metabolic disease with ever increasing prevalence worldwide which is now an epidemic disease affecting 500 million people worldwide. Insufficient insulin secretion from pancreatic β cells unable to maintain blood glucose homeostasis is the main feature of this disease. Multifactorial and complex nature of ...read more
Food-derived bioactive peptides against chronic diseases
Chronic diseases, such as cardiovascular diseases and metabolic diseases, have become a great threat to the human health in recent decades due to the excessive food consumption and the prevalence of sedentary lifestyle. As a class of natural compounds, food-derived bioactive peptides have been demonstrated to possess great potential for ...read more
Innovative delivery systems and formulations for the management of diseases affecting the skin and skin appendages
Skin and skin appendage diseases have high incidence and can highly impact the quality of life. Such diseases include pigmentation disorders, such as melasma, vitiligo and post-inflammatory hyperpigmentation, infectious diseases caused by fungi, viruses, bacteria and parasites, inflammatory diseases such as acne, dermatitis, rosacea, and psoriasis, as well as skin ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Preliminary Analysis of Anti-proliferative, Apoptotic, and Anti-migratory Effects llw-3-6 in Skov-3 Ovarian Cystadenocarcinoma Cell Line
Letters in Drug Design & Discovery Synthesis of Xanthones and Benzophenones as Inhibitors of Tumor Cell Growth
Letters in Drug Design & Discovery Antiangiogenic Therapy for High-Grade Gliomas
CNS & Neurological Disorders - Drug Targets Antitumor Effect of Butanoylated Heparin with Low Anticoagulant Activity on Lung Cancer Growth in Mice and Rats
Current Cancer Drug Targets Endomorphin Derivatives with Improved Pharmacological Properties
Current Medicinal Chemistry Genes Involved in Apoptosis Regulation: Implications for Cancer Therapy
Current Genomics Modulation of Protein-Protein Interactions as a Therapeutic Strategy for the Treatment of Neurodegenerative Tauopathies
Current Topics in Medicinal Chemistry Subject Index to Volume 4
Current Genomics Targeting the Hedgehog Pathway: The development of Cyclopamine and the Development of Anti-Cancer Drugs Targeting the Hedgehog Pathway
Mini-Reviews in Medicinal Chemistry MicroRNAs-based Therapy: A Novel and Promising Strategy for Cancer Treatment
MicroRNA Tissue Biomarkers for Prostate Cancer Radiation Therapy
Current Molecular Medicine Translocator Protein (TSPO) and Neurosteroids: Implications in Psychiatric Disorders
Current Molecular Medicine The Impact of Small Heat Shock Proteins (HspBs) in Alzheimer’s and Other Neurological Diseases
Current Pharmaceutical Design The Ubiquitin-Proteasome Pathway and Resistance Mechanisms Developed Against the Proteasomal Inhibitors in Cancer Cells
Current Drug Targets Procathepsin D as a Tumor Marker, Anti-Cancer Drug or Screening Agent
Anti-Cancer Agents in Medicinal Chemistry MicroRNA-21 as a Novel Therapeutic Target
Current Cancer Therapy Reviews Design, Synthesis and Evaluation of Quinoline-based Small Molecule Inhibitor of STAT3
Letters in Drug Design & Discovery Cell Bystander Effect Induced by Radiofrequency Electromagnetic Fields and Magnetic Nanoparticles
Current Nanoscience Recent Patents on Mesenchymal Stem Cell Mediated Therapy in Inflammatory Diseases
Recent Patents on Inflammation & Allergy Drug Discovery Nanoparticulate Drug Delivery System to Overcome the Limitations of Conventional Curcumin in the Treatment of Various Cancers: A Review
Drug Delivery Letters