Abstract
Amphibians have been favored organisms by experimental embryologists for more than a century. Their large, resilient embryos are ideal for manipulations, such as tissue transplantation, explantation and recombination, methods that have been used to demonstrate the existence and location of inducing centers in developing embryos and to define important embryological principles. Molecular biological approaches developed primarily in Xenopus, including a highly efficient method for transgenesis, have provided another dimension to our understanding of a multitude of cellular and developmental problems. Although there have been many developmental mutants reported in amphibians, mainly in axolotl and Xenopus laevis, amphibians have not been as widely used for genetic approaches as other vertebrates, like the mouse and zebrafish. This has been in part because of the long generation time of these species and their large genome size, especially in the case of axolotl. The duplicated genome of X. laevis also presents potential limitations. But another factor mitigating use of these systems for genetics in past times has been the lack of complementary techniques for studying mutants in detail at the molecular level. A more recently introduced model, Xenopus tropicalis, offers an array of new opportunities for genetic studies. Its short generation time and smaller, diploid genome, together with accumulating genomic resources, make X. tropicalis a very attractive model organism for addressing complex issues in modern cell and developmental biology. Here we will introduce the main features of the X. tropicalis system and briefly discuss possible methodologies for isolating developmental mutants for genetic studies.
Keywords: developmental mutant, genetic screens, genomics, gynogenesis, mutagenesis
Current Genomics
Title: Generation and Characterization of Developmental Mutations in Xenopus tropicalis
Volume: 4 Issue: 8
Author(s): Takuya Nakayama and Robert M. Grainger
Affiliation:
Keywords: developmental mutant, genetic screens, genomics, gynogenesis, mutagenesis
Abstract: Amphibians have been favored organisms by experimental embryologists for more than a century. Their large, resilient embryos are ideal for manipulations, such as tissue transplantation, explantation and recombination, methods that have been used to demonstrate the existence and location of inducing centers in developing embryos and to define important embryological principles. Molecular biological approaches developed primarily in Xenopus, including a highly efficient method for transgenesis, have provided another dimension to our understanding of a multitude of cellular and developmental problems. Although there have been many developmental mutants reported in amphibians, mainly in axolotl and Xenopus laevis, amphibians have not been as widely used for genetic approaches as other vertebrates, like the mouse and zebrafish. This has been in part because of the long generation time of these species and their large genome size, especially in the case of axolotl. The duplicated genome of X. laevis also presents potential limitations. But another factor mitigating use of these systems for genetics in past times has been the lack of complementary techniques for studying mutants in detail at the molecular level. A more recently introduced model, Xenopus tropicalis, offers an array of new opportunities for genetic studies. Its short generation time and smaller, diploid genome, together with accumulating genomic resources, make X. tropicalis a very attractive model organism for addressing complex issues in modern cell and developmental biology. Here we will introduce the main features of the X. tropicalis system and briefly discuss possible methodologies for isolating developmental mutants for genetic studies.
Export Options
About this article
Cite this article as:
Nakayama Takuya and Grainger M. Robert, Generation and Characterization of Developmental Mutations in Xenopus tropicalis, Current Genomics 2003; 4 (8) . https://dx.doi.org/10.2174/1389202033490123
DOI https://dx.doi.org/10.2174/1389202033490123 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Deep Learning in Single Cell Analysis
The field of biology is undergoing a revolution in our ability to study individual cells at the molecular level, and to integrate data from multiple sources and modalities. This has been made possible by advances in technologies for single-cell sequencing, multi-omics profiling, spatial transcriptomics, and high-throughput imaging, as well as ...read more
Genomic Insights into Oncology: Harnessing Machine Learning for Breakthroughs in Cancer Genomics.
This special issue aims to explore the cutting-edge intersection of genomics and oncology, with a strong emphasis on original data and experimental validation. While maintaining the focus on how machine learning and advanced data analysis techniques are revolutionizing our understanding and treatment of cancer, this issue will prioritize contributions that ...read more
Integrating Artificial Intelligence and Omics Approaches in Complex Diseases
Recent advancements in AI and omics methodologies have revolutionized the landscape of biomedical research, enabling us to extract valuable information from vast amounts of complex data. By combining AI algorithms with omics technologies such as genomics, proteomics, metabolomics, and transcriptomics, researchers can obtain a more comprehensive and multi-dimensional analysis of ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Micronutrient Biofortification in Rice through New Breeding Techniques (NBTs): Bangladesh Perspective
Current Nutraceuticals Prostate-Specific G-Protein Coupled Receptor, an Emerging Biomarker Regulating Inflammation and Prostate Cancer Invasion
Current Molecular Medicine Mechanisms of Drug Induced QT Interval Prolongation
Current Drug Safety Mitochondrial Permeability Transition as Target of Anticancer Drugs
Current Pharmaceutical Design Current Advances in the Synthesis and Antitumoral Activity of SIRT1-2 Inhibitors by Modulation of p53 and Pro-Apoptotic Proteins
Current Medicinal Chemistry Arterial Hyperoxia in Severe Head Injury: A Useful or Harmful Option?
Current Pharmaceutical Design Investigating Drug-induced Mitochondrial Toxicity: A Biosensor to Increase Drug Safety?
Current Drug Safety Potassium Channels are a New Target Field in Anticancer Drug Design
Recent Patents on Anti-Cancer Drug Discovery Vascular effects of flavonoids
Current Medicinal Chemistry Berberine: Is it a Promising Agent for Mental Disorders Treatment?
Current Molecular Pharmacology Antiproliferative Strategies for the Treatment of Vascular Proliferative Disease
Current Vascular Pharmacology A Review on Noscapine, and its Impact on Heme Metabolism
Current Drug Metabolism Melatonin in the Biliary Tract and Liver: Health Implications
Current Pharmaceutical Design Screening Neuroprotective Agents Through 4-hydroxynonenal, Ethanol, High Glucose, Homocysteine, Okadaic Acid, Rotenone, and Oxygen-Glucose Deprivation Induced PC12 Injury Models: A Review
Current Psychopharmacology Intracellular Redox State as Target for Anti-Influenza Therapy: Are Antioxidants Always Effective?
Current Topics in Medicinal Chemistry Cystatin C: An Emerging Biomarker in Cardiovascular Disease
Current Topics in Medicinal Chemistry Organoid Models of Heart Diseases: Find a New Channel in Improvements of Cardiac Regenerative Medicine
Current Medicinal Chemistry Small Transthyretin (TTR) Ligands as Possible Therapeutic Agents in TTR Amyloidoses
Current Drug Targets - CNS & Neurological Disorders Pharmacological Targeting in Inherited Arrhythmia Syndromes
Current Medicinal Chemistry LncRNA-mediated Modulation of Endothelial Cells: Novel Progress in the Pathogenesis of Coronary Atherosclerotic Disease
Current Medicinal Chemistry