Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Genetic Predictors of Drug Hypersensitivity

Author(s): Jose A. Cornejo-Garcia, Abderrahim Oussalah, Miguel Blanca, Rosa-Maria Gueant-Rodriguez, Cristobalina Mayorga, Julie Waton, Annick Barbaud, Francesco Gaeta, Antonino Romano and Jean-Louis Gueant

Volume 22, Issue 45, 2016

Page: [6725 - 6733] Pages: 9

DOI: 10.2174/1381612822666160927114941

Price: $65

conference banner
Abstract

Our knowledge of genetic predisposing factors of drug hypersensitivity reactions (DHRs) is still scarce. The analysis of the genetic basis of these reactions may contribute to dissect the underlying mechanisms. We will outline current knowledge of the genetic predictors of most common DHRs, including reactions to betalactam antibiotics (BLs), nonsteroidal anti-inflammatory drugs (NSAIDs) and biological agents. The predictors of DHRs to BLs are mostly linked to IgE-class switching, IgE pathway and atopy (IL4R, NOD2, LGALS3) in replicated candidate gene studies, and to antigen presentation (HLA-DRA) in the single replicated GWAS performed so far. The HLA-DRA variants are predictors of allergy to penicillins, but not to cephalosporins and they influence also the sensitization against prevalent allergens. The predictors of DHRs against NSAIDs are mostly linked to metabolism of eicosanoids (ALOX5, ALOX5AP, TBXAS1, PTGDR, CYSLTR1). Single nucleotide polymorphisms (SNPs) in genes involved in histamine biosynthesis and antigen presentation, HLA, could also have a role in DHRs against NSAIDs. The intriguing association of DHRs to NSAIDs with atopy should deserve further attention. Predictors of DHRs against asparaginase and other biological agents relate to antigen presentation (HLA-DRB1 and HLA-A alleles, respectively). The potential relationship of genetic predictors of DHRs with pathomechanisms also involved in environmental exposure and atopy highlights the need to perform GWAS in contrasted populations, taking into account world-wide variations of allele frequencies and contrasted situations of environmental exposure.

Keywords: Hypersensitivity, immediate and non-immediate reactions, betalactams, nonsteroidal anti-inflammatory drugs, polymorphisms, candidate genes, genome-wide association study.


Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy