Abstract
Toxins have been important tools to characterize the structures and functions of K+ channels in recent years due to their unique blockage of the K+ current and other physiological functions to the K+ channels, especially the voltagegated K+ channels. Knowledge of the interacting surfaces between the toxins and the channels has been accumulated both from biological explorations and theoretical simulations. It has been found that the electrostatic potentials act as the driving force for the recognition of the toxins with the channels, and the orientation of the toxins over the channels follows the direction of the dipole moment. The binding site is composed most of the conservative residues of the negatively charged rings of Asp/Glu and residues around the edge of the central pore. The selectivity mainly comes from the type and distribution of the positive charged residues, and the whole topologies of the toxins. Based on the molecular determinants of the complex formation, and taking advantage of the structure-based methodologies of molecular design, it is hopefully to develop new generation of lead compounds specifically binding with subtypes of K+ channels.
Keywords: toxins, brownian dynamics, electrostatic potential, structure-function relationships
Current Pharmaceutical Design
Title: Simulating the Interactions of Toxins with K+ Channels
Volume: 10 Issue: 9
Author(s): Xiaoqin Huang, Hong Liu, Meng Cui, Wei Fu, Kunqian Yu, Kaixian Chen, Xiaomin Luo, Jianhua Shen and Hualiang Jiang
Affiliation:
Keywords: toxins, brownian dynamics, electrostatic potential, structure-function relationships
Abstract: Toxins have been important tools to characterize the structures and functions of K+ channels in recent years due to their unique blockage of the K+ current and other physiological functions to the K+ channels, especially the voltagegated K+ channels. Knowledge of the interacting surfaces between the toxins and the channels has been accumulated both from biological explorations and theoretical simulations. It has been found that the electrostatic potentials act as the driving force for the recognition of the toxins with the channels, and the orientation of the toxins over the channels follows the direction of the dipole moment. The binding site is composed most of the conservative residues of the negatively charged rings of Asp/Glu and residues around the edge of the central pore. The selectivity mainly comes from the type and distribution of the positive charged residues, and the whole topologies of the toxins. Based on the molecular determinants of the complex formation, and taking advantage of the structure-based methodologies of molecular design, it is hopefully to develop new generation of lead compounds specifically binding with subtypes of K+ channels.
Export Options
About this article
Cite this article as:
Huang Xiaoqin, Liu Hong, Cui Meng, Fu Wei, Yu Kunqian, Chen Kaixian, Luo Xiaomin, Shen Jianhua and Jiang Hualiang, Simulating the Interactions of Toxins with K+ Channels, Current Pharmaceutical Design 2004; 10 (9) . https://dx.doi.org/10.2174/1381612043452776
DOI https://dx.doi.org/10.2174/1381612043452776 |
Print ISSN 1381-6128 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4286 |
Call for Papers in Thematic Issues
"Multidisciplinary Pharmaceutical Drug Design Strategies in the Progress of Drug Discovery"
The process of developing a drug is time and money-consuming, but also fascinating. The development of numerous computational techniques, synthetic methodologies, formulation-based drug discovery, etc., has improved the drug discovery process. The process of developing new drugs is significantly hampered by drug-poor pharmacodynamics and pharmacokinetic problems. To address these challenges, ...read more
Advances in the Molecular Pathogenesis of Inflammatory Bowel Disease.
This thematic issue will emphasize the recent breakthroughs in the mechanisms of Inflammatory bowel disease (IBD) pathogenesis and devotes some understanding of both Crohn’s and ulcerative colitis. It is expected to include studies about cellular and genetic aspects, which help to precipitate the disease, and the immune system-gut microbiome relations ...read more
Blood-Based Biomarkers in Large-Scale Screening for Neurodegenerative Diseases
Disease biomarkers are necessary tools that can be employed in several clinical context of use (COU), ranging from the (early) diagnosis, prognosis, and prediction, to monitoring of disease state and/or drug efficacy. Regarding neurodegenerative diseases, in particular Alzheimer’s disease (AD), a battery of well-validated biomarkers are available, such as cerebrospinal ...read more
Diabetes Mellitus: Advances in Diagnosis and Treatment driving by Precision Medicine
Diabetes mellitus (DM) is a chronic degenerative metabolic disease with ever increasing prevalence worldwide which is now an epidemic disease affecting 500 million people worldwide. Insufficient insulin secretion from pancreatic β cells unable to maintain blood glucose homeostasis is the main feature of this disease. Multifactorial and complex nature of ...read more

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Cancer Cell Permeability-Glycoprotein as a Target of MDR Reverters: Possible Role of Novel Dihydropyridine Derivatives
Current Drug Targets Drugs, Environmental Factors, Loci and Genes Involved in Nonsyndromic Orofacial Cleft
Current Pharmacogenomics The Role of Spiritual Health Experience with Intensity and Duration of Labor Pain While Childbearing and Postpartum
Current Women`s Health Reviews Targeting Cancer Stem Cells with Repurposed Drugs to Improve Current Therapies
Recent Patents on Anti-Cancer Drug Discovery Unique Medicinal Properties of Withania somnifera: Phytochemical Constituents and Protein Component
Current Pharmaceutical Design The GABA Transporter and its Inhibitors
Current Medicinal Chemistry Modulation of GABAA Receptors by Natural Products and the Development of Novel Synthetic Ligands for the Benzodiazepine Binding Site
Current Drug Targets Epilepsy and Cognitive Impairment in Childhood and Adolescence: A Mini-Review
Current Neuropharmacology FDG-PET in the Evaluation of Brain Metabolic Changes Induced by Cognitive Stimulation in aMCI Subjects
Current Radiopharmaceuticals Ultrasound-promoted Organic Synthesis - A Recent Update
Current Organic Chemistry Elderly Patients with Migraine: An Open-Label Study on Prophylaxis Therapy with Levetiracetam
Central Nervous System Agents in Medicinal Chemistry Reversal of Neuropsychiatric Comorbidities in an Animal Model of Temporal Lobe Epilepsy Following Systemic Administration of Dental Pulp Stem Cells and Bone Marrow Mesenchymal Stem Cells
Current Gene Therapy Metabolic Changes in Rat Plasma After Epilepsy by UPLC-MS/MS
Current Pharmaceutical Analysis Glutamate Dehydrogenase as a Promising Target for Hyperinsulinism Hyperammonemia Syndrome Therapy
Current Medicinal Chemistry Genus <i>Gelsemium</i> and its Endophytic Fungi - Comprehensive Review of their Traditional Uses, Phytochemistry, Pharmacology, and Toxicology
Current Topics in Medicinal Chemistry 3D Printing Technology in Customized Drug Delivery System: Current State of the Art, Prospective and the Challenges
Current Pharmaceutical Design Central Anti-Cholinergic Syndrome Induced by Single Therapeutic Dose of Atropine
Current Drug Safety Serotonin as a Modulator of Glutamate- and GABA-Mediated Neurotransmission: Implications in Physiological Functions and in Pathology
Current Neuropharmacology Triazino-caffeine Derivatives by Intramolecular Cyclization: Synthesis, Characterization and Antimicrobial Studies
Letters in Organic Chemistry [General Articles] Cannabinoids: Mechanisms and Therapeutic Applications in the CNS
Current Medicinal Chemistry