Abstract
A wide range of peptides and polypeptides can be appended to either the N- or C-terminus of G proteincoupled receptors without disrupting substantially ligand binding and signal transduction. Following fusion of fluorescent proteins, reporter gene constructs or G protein α subunits to the C-terminal tail of a receptor high content and G protein activation assays can be employed to identify agonist ligands. Further modification of the receptor fusions to introduce enhanced levels of constitutive activity and to physically destabilise the protein allows antagonist / inverse agonists screens to be developed in parallel. Equivalent C-terminal addition of pairs of complementary, non-functional, polypeptide fragments allows the application of enzyme complementation techniques. Introduction of N-terminal tags to receptors has also allowed the introduction of novel assay techniques based on a pH-sensitive cyanine dye. These have the capacity to overcome certain limitations of GPCR-fluorescent protein fusions.
Keywords: assay development, g protein-coupled receptor, g protein, enzyme complementation, green fluorescent protein
Current Pharmaceutical Design
Title: G Protein-Coupled Receptor Fusion Proteins in Drug Discovery
Volume: 10 Issue: 17
Author(s): G. Milligan, G- J. Feng, R. J. Ward, N. Sartania, D. Ramsay, A. J. McLean and J. J. Carrillo
Affiliation:
Keywords: assay development, g protein-coupled receptor, g protein, enzyme complementation, green fluorescent protein
Abstract: A wide range of peptides and polypeptides can be appended to either the N- or C-terminus of G proteincoupled receptors without disrupting substantially ligand binding and signal transduction. Following fusion of fluorescent proteins, reporter gene constructs or G protein α subunits to the C-terminal tail of a receptor high content and G protein activation assays can be employed to identify agonist ligands. Further modification of the receptor fusions to introduce enhanced levels of constitutive activity and to physically destabilise the protein allows antagonist / inverse agonists screens to be developed in parallel. Equivalent C-terminal addition of pairs of complementary, non-functional, polypeptide fragments allows the application of enzyme complementation techniques. Introduction of N-terminal tags to receptors has also allowed the introduction of novel assay techniques based on a pH-sensitive cyanine dye. These have the capacity to overcome certain limitations of GPCR-fluorescent protein fusions.
Export Options
About this article
Cite this article as:
Milligan G., Feng J. G-, Ward J. R., Sartania N., Ramsay D., McLean J. A. and Carrillo J. J., G Protein-Coupled Receptor Fusion Proteins in Drug Discovery, Current Pharmaceutical Design 2004; 10 (17) . https://dx.doi.org/10.2174/1381612043384295
DOI https://dx.doi.org/10.2174/1381612043384295 |
Print ISSN 1381-6128 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4286 |

- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Functional Role of miR-34 Family in Human Cancer
Current Drug Targets Bioenergetics Pathways and Therapeutic Resistance in Gliomas: Emerging Role of Mitochondria
Current Pharmaceutical Design The Tumor Stroma as Mediator of Drug Resistance - A Potential Target to Improve Cancer Therapy?
Current Pharmaceutical Biotechnology Perspectives of Fullerenes, Dendrimers, and Heterocyclic Compounds Application in Tumor Treatment
Recent Patents on Nanomedicine An Overview of High-grade Glioma: Current and Emerging Treatment Approaches
Current Cancer Therapy Reviews A Closer Look at α-Secretase
Current Alzheimer Research Fluorescent Immortalized Human Adipose Derived Stromal Cells (hASCs-TS/GFP+) for Studying Cell Drug Delivery Mediated by Microvesicles
Anti-Cancer Agents in Medicinal Chemistry Molecular Probes for Malignant Melanoma Imaging
Current Pharmaceutical Biotechnology NAD<sup>+</sup>/NADH Metabolism and NAD<sup>+</sup>-Dependent Enzymes in Cell Death and Ischemic Brain Injury: Current Advances and Therapeutic Implications
Current Medicinal Chemistry Neuropathic Pain and Lung Delivery of Nanoparticulate Drugs: An Emerging Novel Therapeutic Strategy
CNS & Neurological Disorders - Drug Targets Beyond RAS: The Role of Epidermal Growth Factor Receptor (EGFR) and its Network in the Prediction of Clinical Outcome During Anti-EGFR Treatment in Colorectal Cancer Patients
Current Drug Targets Biodistribution and Safety Assessment of Bladder Cancer Specific Recombinant Oncolytic Adenovirus in Subcutaneous Xenografts Tumor Model in Nude Mice
Current Gene Therapy Inhibitors of Cyclin Dependent Kinases: Useful Targets for Cancer Treatment
Current Cancer Drug Targets Functions of S100 Proteins
Current Molecular Medicine Dynamic Contrast-Enhanced MRI in Oncology Drug Development
Current Clinical Pharmacology Druggable Orthosteric and Allosteric Hot Spots to Target Protein-protein Interactions
Current Pharmaceutical Design LGI1 Affects Survival of Neuroblastoma Cells by Inhibiting Signalling through Phosphoinositide 3-Kinase
Current Signal Transduction Therapy Early Post-Operative Neuroimaging After Surgery for Malignant Glioma
Current Medical Imaging Editorial (Hot Topic: Therapeutic Potential of Fetal Mesenchymal Stem Cells)
Current Stem Cell Research & Therapy Microarray Data Analysis to Find Diagnostic Approach and Identify Families of Disease-Altered Genes Based on Rank-Reverse of Gene Expression
Current Bioinformatics