Gene Electrotransfer: A Mechanistic Perspective

Author(s): Christelle Rosazza, Sasa Haberl Meglic, Andreas Zumbusch, Marie-Pierre Rols and Damijan Miklavcic

Volume 16, Issue 2, 2016

Page: [98 - 129] Pages: 32

DOI: 10.2174/1566523216666160331130040

Open Access Journals Promotions 2
Abstract

Gene electrotransfer is a powerful method of DNA delivery offering several medical applications, among the most promising of which are DNA vaccination and gene therapy for cancer treatment. Electroporation entails the application of electric fields to cells which then experience a local and transient change of membrane permeability. Although gene electrotransfer has been extensively studied in in vitro and in vivo environments, the mechanisms by which DNA enters and navigates through cells are not fully understood. Here we present a comprehensive review of the body of knowledge concerning gene electrotransfer that has been accumulated over the last three decades. For that purpose, after briefly reviewing the medical applications that gene electrotransfer can provide, we outline membrane electropermeabilization, a key process for the delivery of DNA and smaller molecules. Since gene electrotransfer is a multipart process, we proceed our review in describing step by step our current understanding, with particular emphasis on DNA internalization and intracellular trafficking. Finally, we turn our attention to in vivo testing and methodology for gene electrotransfer.

Keywords: Electric field, Electroporation, Gene electrotransfer, Plasmid DNA, Gene therapy, DNA vaccination.


© 2024 Bentham Science Publishers | Privacy Policy