Abstract
Manganese is an essential metal that participates as a co-factor in a number of critical biological functions such as electron transport, detoxification of free radicals, and synthesis of neurotransmitters. Like other heavy metals, high concentrations of manganese are toxic. For example, chronic overexposure to manganese leads to movement disorders. In order to maintain this balance between being an essential participant in enzyme function and being a toxic heavy metal, a rich biology has evolved to transport and store manganese. Paramagnetic forms of manganese ions are potent MRI relaxation agents. Indeed, Mn2+ was the first contrast agent proposed for use in MRI. Recently, there is renewed interest in combining the strong MRI relaxation effects of Mn2+ with its unique biology in order to expand the range of information that can be measured by MRI. Manganese Enhanced MRI is being developed to give unique tissue contrast, assess tissue viability, act as a surrogate marker of calcium influx into cells and trace neuronal connections. In this article we review recent work and point out prospects for the future uses of manganese enhanced MRI.
Keywords: Magnetic Resonance Imaging, detoxification, Paramagnetic
Current Pharmaceutical Biotechnology
Title: Manganese Enhanced Magnetic Resonance Imaging
Volume: 5 Issue: 6
Author(s): Jung Hee Lee and Alan P. Koretsky
Affiliation:
Keywords: Magnetic Resonance Imaging, detoxification, Paramagnetic
Abstract: Manganese is an essential metal that participates as a co-factor in a number of critical biological functions such as electron transport, detoxification of free radicals, and synthesis of neurotransmitters. Like other heavy metals, high concentrations of manganese are toxic. For example, chronic overexposure to manganese leads to movement disorders. In order to maintain this balance between being an essential participant in enzyme function and being a toxic heavy metal, a rich biology has evolved to transport and store manganese. Paramagnetic forms of manganese ions are potent MRI relaxation agents. Indeed, Mn2+ was the first contrast agent proposed for use in MRI. Recently, there is renewed interest in combining the strong MRI relaxation effects of Mn2+ with its unique biology in order to expand the range of information that can be measured by MRI. Manganese Enhanced MRI is being developed to give unique tissue contrast, assess tissue viability, act as a surrogate marker of calcium influx into cells and trace neuronal connections. In this article we review recent work and point out prospects for the future uses of manganese enhanced MRI.
Export Options
About this article
Cite this article as:
Lee Hee Jung and Koretsky P. Alan, Manganese Enhanced Magnetic Resonance Imaging, Current Pharmaceutical Biotechnology 2004; 5 (6) . https://dx.doi.org/10.2174/1389201043376607
DOI https://dx.doi.org/10.2174/1389201043376607 |
Print ISSN 1389-2010 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4316 |
Call for Papers in Thematic Issues
Artificial Intelligence in Bioinformatics
Bioinformatics is an interdisciplinary field that analyzes and explores biological data. This field combines biology and information system. Artificial Intelligence (AI) has attracted great attention as it tries to replicate human intelligence. It has become common technology for analyzing and solving complex data and problems and encompasses sub-fields of machine ...read more
Latest Advancements in Biotherapeutics.
The scope of this thematic issue is to comprehensively explore the rapidly evolving landscape of biotherapeutics, emphasizing breakthroughs in precision medicine. Encompassing diverse therapeutic modalities, the issue will delve into the latest developments in monoclonal antibodies, CRISPR/Cas gene editing, CAR-T cell therapies, and innovative drug delivery systems, such as nanoparticle-based ...read more
Machine Learning and Artificial Intelligence for Medical Data Analysis and Human Information Analysis in Healthcare
The intersection of machine learning (ML) and artificial intelligence (AI) with the pharmaceutical industry is revolutionizing traditional paradigms in drug discovery and development. These technologies have introduced innovative approaches to analyzing complex datasets and predicting chemical properties, leading to more efficient identification and optimization of drug candidates. By employing sophisticated ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
Cardiovascular Effects of Omega-3 Free Fatty Acids.
Current Vascular Pharmacology Yeast as a Model System to Study Trafficking of Small Vesicles Carrying Signal-less Proteins In and Out of the Cell
Current Protein & Peptide Science The Endocannabinoid System in Peripheral Lymphocytes as a Mirror of Neuroinflammatory Diseases
Current Pharmaceutical Design Mechanisms of Hormonal Regulation of Sertoli Cell Development and Proliferation: A Key Process for Spermatogenesis
Current Molecular Pharmacology Anesthesia Issues in Central Nervous System Disorders
Current Aging Science Iontophoresis: Drug Delivery System by Applying an Electrical Potential Across the Skin
Drug Delivery Letters RNA Interference and Amyotrophic Lateral Sclerosis
Current Drug Metabolism Identification and Detection of Transmissible Spongiform Encephalopathies
Current Medicinal Chemistry - Immunology, Endocrine & Metabolic Agents Autophagy as a Potential Therapeutic Target in Breast Cancer Treatment
Current Cancer Drug Targets Prime Time for G-Protein-Coupled Receptor Heteromers as Therapeutic Targets for CNS disorders: The Dopamine D1-D3 Receptor Heteromer
CNS & Neurological Disorders - Drug Targets Multiple Protective Functions of Sigma1 Receptor
Current Protein & Peptide Science The Topology and Dynamics of Protein Complexes: Insights from Intra– Molecular Network Theory
Current Protein & Peptide Science Exploring the Role of Stem Cell Therapy in Treating Neurodegenerative Diseases: Challenges and Current Perspectives
Current Stem Cell Research & Therapy Recent Updates of N-Type Calcium Channel Blockers with Therapeutic Potential for Neuropathic Pain and Stroke
Current Topics in Medicinal Chemistry Aldose Reductase Enzyme and its Implication to Major Health Problems of the 21st Century
Current Medicinal Chemistry Gene Therapy in Plastic and Reconstructive Surgery
Current Gene Therapy Microemulsions Based Transdermal Drug Delivery Systems
Current Drug Discovery Technologies The Importance of NAD in Multiple Sclerosis
Current Pharmaceutical Design Dopamine Receptor Pharmacology: Interactions with Serotonin Receptors and Significance for the Aetiology and Treatment of Schizophrenia
CNS & Neurological Disorders - Drug Targets Genes Involved in Hereditary Hearing Impairment
Current Genomics