Abstract
T cell homeostasis is largely controlled by a balance between cell death and survival and anomalies in either process account for a number of diseases linked to excessive or faulty T cell growth. Yet, the influence that cells outside the immunological system have on these processes has only recently received attention. Accumulated evidence indicate that homeostasis of the CD4+ and CD8+ T cell pools is highly dynamic and regulated by signals delivered by cells and molecules present in the different internal microenvironments. The major function of red blood cells (RBC) is generally considered to be oxygen and carbon dioxide transport. In recent years, however, RBC have been implicated in the regulation of basic physiological processes, from vascular contraction and platelet aggregation to T cell growth and survival. Regulation of T cell survival by RBC may influence the response of selected subsets of T cells to internal or external stimuli and may help explaining the immunomodulatory activities of red blood cells. By interfering in the balance between death and survival RBC become potential tools that can be manipulated to improve or reverse pathological situations characterized by anomalies in the control of T cell growth.
Keywords: red blood cell, t cell, cd4+, apoptosis, growth, iron
Current Pharmaceutical Design
Title: Red Blood Cells as Modulators of T Cell Growth and Survival
Volume: 10 Issue: 2
Author(s): Fernando A. Arosa, Carlos F. Pereira and Ana M. Fonseca
Affiliation:
Keywords: red blood cell, t cell, cd4+, apoptosis, growth, iron
Abstract: T cell homeostasis is largely controlled by a balance between cell death and survival and anomalies in either process account for a number of diseases linked to excessive or faulty T cell growth. Yet, the influence that cells outside the immunological system have on these processes has only recently received attention. Accumulated evidence indicate that homeostasis of the CD4+ and CD8+ T cell pools is highly dynamic and regulated by signals delivered by cells and molecules present in the different internal microenvironments. The major function of red blood cells (RBC) is generally considered to be oxygen and carbon dioxide transport. In recent years, however, RBC have been implicated in the regulation of basic physiological processes, from vascular contraction and platelet aggregation to T cell growth and survival. Regulation of T cell survival by RBC may influence the response of selected subsets of T cells to internal or external stimuli and may help explaining the immunomodulatory activities of red blood cells. By interfering in the balance between death and survival RBC become potential tools that can be manipulated to improve or reverse pathological situations characterized by anomalies in the control of T cell growth.
Export Options
About this article
Cite this article as:
Arosa A. Fernando, Pereira F. Carlos and Fonseca M. Ana, Red Blood Cells as Modulators of T Cell Growth and Survival, Current Pharmaceutical Design 2004; 10 (2) . https://dx.doi.org/10.2174/1381612043453432
DOI https://dx.doi.org/10.2174/1381612043453432 |
Print ISSN 1381-6128 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4286 |
Call for Papers in Thematic Issues
Advances in the Molecular Pathogenesis of Inflammatory Bowel Disease.
This thematic issue will emphasize the recent breakthroughs in the mechanisms of Inflammatory bowel disease (IBD) pathogenesis and devotes some understanding of both Crohn’s and ulcerative colitis. It is expected to include studies about cellular and genetic aspects, which help to precipitate the disease, and the immune system-gut microbiome relations ...read more
Blood-based biomarkers in large-scale screening for neurodegenerative diseases
Disease biomarkers are necessary tools that can be employed in several clinical context of use (COU), ranging from the (early) diagnosis, prognosis, and prediction, to monitoring of disease state and/or drug efficacy. Regarding neurodegenerative diseases, in particular Alzheimer’s disease (AD), a battery of well-validated biomarkers are available, such as cerebrospinal ...read more
Current Pharmaceutical challenges in the treatment and diagnosis of neurological dysfunctions
Neurological dysfunctions (MND, ALS, MS, PD, AD, HD, ALS, Autism, OCD etc..) present significant challenges in both diagnosis and treatment, often necessitating innovative approaches and therapeutic interventions. This thematic issue aims to explore the current pharmaceutical landscape surrounding neurological disorders, shedding light on the challenges faced by researchers, clinicians, and ...read more
Diabetes mellitus: advances in diagnosis and treatment driving by precision medicine
Diabetes mellitus (DM) is a chronic degenerative metabolic disease with ever increasing prevalence worldwide which is now an epidemic disease affecting 500 million people worldwide. Insufficient insulin secretion from pancreatic β cells unable to maintain blood glucose homeostasis is the main feature of this disease. Multifactorial and complex nature of ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
The Stroke-Induced Blood-Brain Barrier Disruption: Current Progress of Inspection Technique, Mechanism, and Therapeutic Target
Current Neuropharmacology Neuroprotection by Resveratrol in Diabetic Neuropathy: Concepts & Mechanisms
Current Medicinal Chemistry Neuroprotection of Thioredoxin1 in the Brain
Current Alzheimer Research IPR and Technological Issues Regarding a Biopharmaceutical Formulation -Hemoglobin
Recent Patents on Biotechnology The potential for circulating microRNAs in the diagnosis of myocardial infarction: a novel approach to disease diagnosis and treatment
Current Pharmaceutical Design Cannabinoids as Neuroprotective Agents in Traumatic Brain Injury
Current Pharmaceutical Design Pharmacological Strategies that Affect HIF-1 in the Ischemic Brain: Focus on Hydroxylases Activity and Protein Kinase Pathways
Current Signal Transduction Therapy Pexelizumab and its Role in the Treatment of Myocardial Infarction and in Coronary Artery Bypass Graft Surgery: A Review
Recent Patents on Cardiovascular Drug Discovery Channel-Like Functions of the 18-kDa Translocator Protein (TSPO): Regulation of Apoptosis and Steroidogenesis as Part of the Host-Defense Response
Current Pharmaceutical Design Dietary Antioxidants as Potential Pharmacological Agents for Ischemic Stroke
Current Medicinal Chemistry Dynamics of Toll-like Receptors Signaling in Skeletal Muscle Atrophy
Current Medicinal Chemistry Platelets in Atherothrombosis: New and Evolving Roles
Current Pharmaceutical Design Radix Astragali (Astragalus): Latest Advancements and Trends in Chemistry, Analysis, Pharmacology and Pharmacokinetics
Current Organic Chemistry Agonism of Histaminergic-H<sub>1</sub> Receptors in Ischemic Postconditioning During Cerebral Ischemia-Reperfusion Injury is Protective
Current Neurovascular Research Biological Properties and Therapeutic Potential of Bilirubin
Mini-Reviews in Medicinal Chemistry Role of Nitrosative Stress and Poly(ADP-ribose) Polymerase Activation in Myocardial Reperfusion Injury
Current Vascular Pharmacology Toll-Like Receptors and Kidney Diseases
Inflammation & Allergy - Drug Targets (Discontinued) Nutritional Antioxidants and Adaptive Cell Responses: An Update
Current Molecular Medicine Salidroside - Can it be a Multifunctional Drug?
Current Drug Metabolism Ursodeoxycholic Acid (UDCA) Promotes Lactate Metabolism in Mouse Hepatocytes through Cholic Acid (CA) - Farnesoid X Receptor (FXR) Pathway
Current Molecular Medicine