Abstract
The Pictet-Spenglerase strictosidine synthase (STR) has been characterized as the central enzyme in the biosynthesis of around 2000 monoterpenoid indole alkaloids in plants. In the light of a high therapeutic value and huge scaffold diversity these alkaloids represent, STR as an enzyme has attracted great attentions in recent years, intending to be utilized in the formation of new interesting alkaloids with unusual substitution pattern or even with novel scaffolds. For outlining the application potential that STR possesses, together with insight into the reaction mechanism catalyzed by STR, strategies and methods for exploring the applicability of STR have been updated in this article by taking R. serpentina STR (RS-STR) and C. roseus. STR (CR-STR) as representative models, followed by introducing the latest released complex structures of RS-STR with new substrates. Examples provided here, including substrate scaffold tailoring, X-ray crystal complex structure comparison, protein engineering and biosynthetic pathway reprogramming, pave the way to finally construct novel alkaloids libraries by chemo-enzymatic approaches.
Keywords: Alkaloids, application strategies, protein engineering, strictosidine synthase, substrates, X-ray complex structures.
Current Medicinal Chemistry
Title:Using Strictosidine Synthase to Prepare Novel Alkaloids
Volume: 22 Issue: 15
Author(s): Huajian Zhu, Petra Kercmar, Fangrui Wu, Chitra Rajendran, Lianli Sun, Meitian Wang and Joachim Stockigt
Affiliation:
Keywords: Alkaloids, application strategies, protein engineering, strictosidine synthase, substrates, X-ray complex structures.
Abstract: The Pictet-Spenglerase strictosidine synthase (STR) has been characterized as the central enzyme in the biosynthesis of around 2000 monoterpenoid indole alkaloids in plants. In the light of a high therapeutic value and huge scaffold diversity these alkaloids represent, STR as an enzyme has attracted great attentions in recent years, intending to be utilized in the formation of new interesting alkaloids with unusual substitution pattern or even with novel scaffolds. For outlining the application potential that STR possesses, together with insight into the reaction mechanism catalyzed by STR, strategies and methods for exploring the applicability of STR have been updated in this article by taking R. serpentina STR (RS-STR) and C. roseus. STR (CR-STR) as representative models, followed by introducing the latest released complex structures of RS-STR with new substrates. Examples provided here, including substrate scaffold tailoring, X-ray crystal complex structure comparison, protein engineering and biosynthetic pathway reprogramming, pave the way to finally construct novel alkaloids libraries by chemo-enzymatic approaches.
Export Options
About this article
Cite this article as:
Zhu Huajian, Kercmar Petra, Wu Fangrui, Rajendran Chitra, Sun Lianli, Wang Meitian and Stockigt Joachim, Using Strictosidine Synthase to Prepare Novel Alkaloids, Current Medicinal Chemistry 2015; 22 (15) . https://dx.doi.org/10.2174/0929867322666150408110919
DOI https://dx.doi.org/10.2174/0929867322666150408110919 |
Print ISSN 0929-8673 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-533X |
Call for Papers in Thematic Issues
Advances in Medicinal Chemistry: From Cancer to Chronic Diseases.
The broad spectrum of the issue will provide a comprehensive overview of emerging trends, novel therapeutic interventions, and translational insights that impact modern medicine. The primary focus will be diseases of global concern, including cancer, chronic pain, metabolic disorders, and autoimmune conditions, providing a broad overview of the advancements in ...read more
Approaches to the Treatment of Chronic Inflammation
Chronic inflammation is a hallmark of numerous diseases, significantly impacting global health. Although chronic inflammation is a hot topic, not much has been written about approaches to its treatment. This thematic issue aims to showcase the latest advancements in chronic inflammation treatment and foster discussion on future directions in this ...read more
Cellular and Molecular Mechanisms of Non-Infectious Inflammatory Diseases: Focus on Clinical Implications
The Special Issue covers the results of the studies on cellular and molecular mechanisms of non-infectious inflammatory diseases, in particular, autoimmune rheumatic diseases, atherosclerotic cardiovascular disease and other age-related disorders such as type II diabetes, cancer, neurodegenerative disorders, etc. Review and research articles as well as methodology papers that summarize ...read more
Chalcogen-modified nucleic acid analogues
Chalcogen-modified nucleosides, nucleotides and oligonucleotides have been of great interest to scientific research for many years. The replacement of oxygen in the nucleobase, sugar or phosphate backbone by chalcogen atoms (sulfur, selenium, tellurium) gives these biomolecules unique properties resulting from their altered physical and chemical properties. The continuing interest in ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements