Generic placeholder image

Current Topics in Medicinal Chemistry


ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Antioxidant Effects of Coumarins Include Direct Radical Scavenging, Metal Chelation and Inhibition of ROS-Producing Enzymes

Author(s): Tomas Filipsky, Michal Riha, Katerina Macakova, Eva Anzenbacherova, Jana Karlickova and Premysl Mladenka

Volume 15, Issue 5, 2015

Page: [415 - 431] Pages: 17

DOI: 10.2174/1568026615666150206152233

Price: $65


Coumarins represent a large group of 1,2-benzopyrone derivatives which have been identified in many natural sources and synthetized as well. Several studies have shown that their antioxidant capacity is not based only on direct scavenging of reactive oxygen and nitrogen species (RONS) but other mechanisms are also involved. These include: a) the chelation of transient metals iron and copper, which are known to catalyse the Fenton reaction; and b) the inhibition of RONS-producing enzymes (e.g. xanthine oxidase, myeloperoxidase and lipoxygenase), suggesting that mechanism(s) involved on cellular level are complex and synergistic. Moreover, many factors must be taken into account when analysing structure-antioxidant capacity relationships of coumarins due to different in vitro/in vivo methodological approaches. The structural features necessary for the direct RONS scavenging and metal chelation are apparently similar and the ideal structures are 6,7-dihydroxy- or 7,8-dihydroxycoumarins. However, the clinical outcome is unknown, because these coumarins are able to reduce copper and iron, and may thus paradoxically potentiate the Fenton chemistry. The similar structural features appear to be associated with inhibition of lipoxygenase, probably due to interference with iron in its active site. Contrarily, 6,7-dihydroxycoumarin seems to be the most active coumarin in the inhibition of xanthine oxidase while its derivative bearing the 4-methyl group or 7,8-dihydroxycoumarin are less active or inactive. In addition, coumarins may hinder the induction of inducible NO-synthase and cyclooxygenase- 2. Sparse data on inhibition of myeloperoxidase do not enable any clear conclusion, but some coumarins may block it.

Keywords: Antioxidant, Copper, Coumarins, Iron, Lipoxygenase, Myeloperoxidase, Xanthine oxidase.

Graphical Abstract

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy