Generic placeholder image

Current Organic Chemistry


ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Tsuji-Trost Type Functionalization of Allylic Substrates with Challenging Leaving Groups: Recent Developments

Author(s): Raffaella Ferraccioli and Luca Pignataro

Volume 19, Issue 2, 2015

Page: [106 - 120] Pages: 15

DOI: 10.2174/1385272819666150122232013

Price: $65


The Review reports the recent developments of palladium-catalyzed nucleophilic substitution of allylic alcohols and allylic amines used as electrophiles. The poor ability of the hydroxyl and amino groups to serve as good leaving groups has been overcome by the employment of additives which promote the palladium-catalyzed C-N and C-O bond cleavage. However, allylic alcohol and amine activation can be achieved by using appropriate catalytic systems or solvents, without any external activators. Significant expansion of the nucleophile scope allows to obtain various allylic compounds through the regio- and stereoselective formation of carbon-carbon and carbonheteroatom bonds.

Keywords: Additive, allylic alcohol, allylic amine, electrophile, nucleophile, palladium, Tsuji-Trost reaction.

Graphical Abstract
Selected reviews: (a) Tsuji, J. Carbon-carbon bond formation via palladium complexes. Acc. Chem. Res., 1969, 2, 144-152. (b) Trost, B.M.; Van Vranken, L.V. Asymmetric transition metal-catalyzed allylic alkylations. Chem. Rev., 1996, 96, 395-422. (c) Trost, B.M.; Crawley, M.L. Asymmetric transition-metal-catalyzed allylic alkylations: Applications in total synthesis. Chem. Rev., 2003, 103, 2921-2943. (d) Trost, B.M.; Machacek, M.R.; Aponick, A. Predicting the stereochemistry of diphenylphosphino benzoic acid (DPPBA)-based palladium-catalyzed asymmetric allylic alkylation reactions: A working model. Acc. Chem. Res., 2006, 39, 747-760. (e) Lu, Z.; Ma, S. Metal-catalyzed enantioselective allylation in asymmetric synthesis Angew. Chem. Int. Ed., 2008, 47, 258-297. (f) Trost, B.M.; Zhang, T.; Sieber, J.D. Catalytic asymmetric allylic alkylation employing heteroatom nucleophiles: A powerful method for C–X bond formation. Chem. Sci., 2010, 1, 427-440. (g) For an up-to-date review including regioselective C-C bond forming Tsuji-Trost reactions, see: Kapdi, A.R.; Prajapati, D. Regioselective palladium-catalysed cross-coupling reactions: A powerful synthetic tool. RSC Adv., 2014, 4, 41245-41259.
For reviews on the direct use of allylic alcohols in metal-catalyzed nucleophilic substitution, see: (a) Tamaru, Y. Activation of allyl alcohols as allyl cations, allyl anions, and amphiphilic allylic species by palladium. Eur. J. Org. Chem., 2005, 13, 2647-2656.
(b) Muzart, J. Palladium-catalysed reactions of alcohols. Part B: Formation of C-C and C-N bonds from unsaturated alcohols. Tetrahedron, 2005, 61, 4179-4212.
(c) Muzart, J. Procedures for and possible mechanisms of Pd-catalyzed allylations of primary and secondary amines with allylic alcohols. Eur. J. Org. Chem., 2007, 19, 3077-3089.
(d) Sundararaju, B.; Achard, M.; Bruneau, C. Transition metal catalyzed nucleophilic allylic substitution: Activation of allylic alcohols via p-allylic species. Chem. Soc. Rev., 2012, 41, 4467-4483.
(e) Bandini, M.; Cera, G.; Chiarucci, M. Catalytic enantioselective alkylations with allylic alcohols. Synthesis, 2012, 44, 504-512.
(f) Liu, W.; Zhao, X. Carbon–sulfur bond formation via metal-catalyzed allylations of sulfur nucleophiles. Synthesis, 2013, 45, 2051-2069.
For selected reviews on allylic amine synthesis, see: (a) Johannsen, M.; Jørgensen, K.A. Allylic amination. Chem. Rev., 1998, 98, 1689-1708.
(b) Mechanistically driven development of iridium catalysts for asymmetric allylic substitution. Acc. Chem. Res., 2011, 43, 1461-1475.
(c) Ramirez, T.A.; Zhao, B.; Shi, Y. Recent advances in transition metal-catalyzed sp3 C-H amination adjacent to double bonds and carbonyl groups. Chem. Soc. Rev., 2012, 41, 931-942.
(a) Tamaru, Y.; Horino, Y.; Araki, M.; Tanaka, S.; Kimura, M. Et3B-promoted, Pd(0)-catalyzed allylation of active methylene compounds with allylic alcohols. Tetrahedron Lett., 2000, 30, 5705-5709.
(b) Kimura, M.; Horino, Y.; Mukai, R.; Tanaka, S.; Tamaru, Y. Strikingly simple direct a-allylation of aldehydes with allyl alcohols: Remarkable advance in the Tsuji-Trost reaction. J. Am. Chem. Soc., 2001, 123, 10401-10402.
(c) Kimura, M.; Futamata, M.; Shibata, K.; Tamaru, Y. Pd·Et3B-catalyzed alkylation of amines with allylic alcohols. Chem. Commun., 2003, 24, 234-235.
Fukushima, M.; Takushima, D.; Satomura, H.; Onodera, G.; Kimura, M. Stereodefined construction of trisubstituted alkenes by direct coupling reaction of allylating agents, alkynes, and organoboranes. Chemistry, 2012, 18, 8019-8023.
(a) Miyaura, N.; Yoshinari, T.; Itoh, M. Reaction of lithium alkynyltrialkylborates with propionic acid. General and convenient syntheses of internal and terminal olefins using organoboranes. Tetrahedron Lett., 1974, 15, 2961-2964.
(b) Pelter, A.; Bentley, T.W.; Harrison, C.R.; Subrahmanyam, C.; Laub, R.J. The chemistry of organoborates. Part 5. Alkylation of alkynyltrialkylborate salts. J. Chem. Soc. Perkin Trans., 1, 1976, 22, 2419-2438.
Li, Y.X.; Xuan, Q.Q.; Liu, L.; Wang, D.; Chen, Y.J.; Li, C.J.A. Pd(0)-catalyzed direct dehydrative coupling of terminal alkynes with allylic alcohols to access 1,4-enynes. J. Am. Chem. Soc., 2013, 135, 12536-12539.
Itoh, K.; Hamaguchi, N.; Miura, M.; Nomura, N. Palladium-catalysed reaction of aryl-substituted allylic alcohols with zinc enolates of b-dicarbonyl compounds in the presence of titanium(IV) isopropoxide J. Chem. Soc. Perkin Trans., 1,, 1992, 21, 2833-2835.
Yang, S.C.; Hung, C.W. Palladium-catalyzed amination of allylic alcohols using anilines. J. Org. Chem., 1999, 64, 5000-5001.
(a) Kan, S.B.J.; Matsubara, R.; Berthiol, F.; Kobayashi, S. Catalytic direct-type substitution reaction of a-alkylenolates: A Pd/Broensted base-catalysed approach to the decarboxylative allylation of sulfonylimidates. Chem. Commun. , 2008, 47, 6354-6356.
(b) Matsubara, R.; Masuda, K.; Nakano, J.; Kobayashi, S. Direct use of allylic alcohols in the allylation of sulfonylimidates. Chem. Commun. , 2010, 46, 8662-8664.
Lu, X.; Lu, L.; Sun, J. Palladium and arsenic(III) oxide-catalyzed allylic alkylation by allylic alcohols under neutral conditions. J. Mol. Catal. Chem., 1987, 41, 245-251.
Wu, H.B.; Ma, X.T.; Tian, S.K. Palladium-catalyzed stereospecific cross-coupling of enantioenriched allylic alcohols with boronic acids. Chem. Commun. , 2014, 50, 219-221.
Ye, J.; Zhao, J.; Xu, J.; Mao, Y.; Zhang, Y.J. Pd-Catalyzed stereospecific allyl–aryl coupling of allylic alcohols with arylboronic acids. Chem. Commun. , 2013, 49, 9761-9763.
For previous examples on direct coupling between boronic acids and allylic alcohols, see: (a) Kayaki, Y.; Koda, T.; Ikariya, T. A highly effective (triphenylphosphite)palladium catalyst for a cross-coupling reaction of allylic alcohols with organoboronic acids. Eur. J. Org. Chem., 2004, 24, 4989-4993.
(b) Tsukamoto, H.; Sato, M.; Kondo, Y. Palladium(0)-catalyzed direct cross-coupling reaction of allyl alcohols with aryl- and vinyl-boronic acids. Chem. Commun. , 2004, 1200-1201.
Ma, X.T.; Dai, R.H.; Zhang, J.; Gu, Y.; Tian, S.K. Catalytic stereospecific substitution of enantioenriched allylic alcohols with sodium sulfinates. Adv. Synth. Catal., 2014, 356, 2984-2988. For the first example of direct, non-stereospecific sulphonylation of allylic alcohols, see: Chandrasekhar, S.; Jagadeshwar, V.; Saritha, B.; Narsihmulu, C. Palladium-triethylborane-triggered direct and regioselective conversion of allylic alcohols to allyl phenyl sulfones. J. Org. Chem., 2005, 70, 6506-6507.
Manabe, K.; Kobayashi, S. Palladium-catalyzed, carboxylic acid-assisted allylic substitution of carbon nucleophiles with allyl alcohols as allylating agents in water. Org. Lett., 2003, 5, 3341-3244.
Patil, N.T.; Yamamoto, Y. Direct allylic substitution of allyl alcohols by carbon pronucleophiles in the presence of a palladium/carboxylic acid catalyst under neat conditions. Tetrahedron Lett., 2004, 45, 3101-3103.
Yang, H.; Zhou, H.; Yin, H.; Xia, C.; Jiang, G. Highly efficient direct allylation of oxindoles with simple allylic alcohols enabled by palladium/Bronsted acid catalysis. Synlett, 2014, 25, 2149-2154.
Usui, I.; Schmidt, S.; Breit, B. Dual palladium- and proline-catalyzed allylic alkylation of enolizable ketones and aldehydes with allylic alcohols. Org. Lett., 2009, 11, 1453-1456.
Yasuda, S.; Kumagai, N.; Shibasaki, M. Direct asymmetric allylation of ketones with allylic alcohols via Pd/enamine cooperative function. Heterocycles, 2012, 86, 745-747.
Yoshida, M.; Masaki, E.; Terumine, T.; Hara, S. Asymmetric a-allylation of a-branched aldehydes with allyl alcohols by synergistic catalysis using an achiral palladium complex and a chiral primary amino acid. Synthesis, 2014, 46, 1367-1373.
List, B.; Jiang, G. Direct asymmetric α-allylation of aldehydes with simple allylic alcohols enabled by the concerted action of three different catalysts. Angew. Chem. Int. Ed., 2011, 50, 9471-9474.
Jindal, G.; Sunoj, R.B. Mechanistic insights on cooperative asymmetric multicatalysis using chiral counterions. J. Org. Chem., 2014, 79, 7600-7606.
Tao, Z.L.; Zhang, W.Q.; Chen, D.F.; Adele, A.; Gong, L.Z. Pd-catalyzed asymmetric allylic alkylation of pyrazol-5-ones with allylic alcohols: the role of the chiral phosphoric acid in C-O bond cleavage and stereocontrol. J. Am. Chem. Soc., 2013, 135, 9255-9258.
(a) Zhou, H.; Yang, H.; Liu, M.; Xia, C.; Jiang, G. Bronsted acid accelerated Pd-catalyzed direct asymmetric allylic alkylation of azlactones with simple allylic alcohols: A practical access to quaternary allylic amino acid derivatives. Org. Lett., 2014, 16, 5350-5353.
(b) Zhou, H.; Yang, H.; Yin, H.; Liu, M.; Xia, C.; Jiang, G. Palladium catalyzed direct allylation of azlactones with simple allylic alcohols in the absence of any activators. RSC Advances, 2014, 4, 25596-25599.
(a) Defieber, C.; Ariger, M.A.; Moriel, P.; Carreira, E.M. Iridium-catalyzed synthesis of primary allylic amines from allylic alcohols: Sulfamic acid as ammonia equivalent. Angew. Chem. Int. Ed., 2007, 46, 3139-3143.
(b) Roggen, M.; Carreira, E.M. Stereospecific substitution of allylic alcohols to give optically active primary allylic amines: Unique reactivity of a (P,alkene)Ir complex modulated by iodide. J. Am. Chem. Soc., 2010, 132, 11917-11919.
Banerjee, D.; Junge, K.; Beller, M. Cooperative catalysis by palladium and a chiral phosphoric acid: enantioselective amination of racemic allylic alcohols. Angew. Chem. Int. Ed., 2014, 53, 13049-13053.
Liu, Q.; Wu, L.; Jiao, H.; Fang, X.; Jackstell, R.; Beller, M. Domino catalysis: Palladium-catalyzed carbonylation of allylic alcohols to b,g-unsaturated esters. Angew. Chem. Int. Ed., 2013, 52, 8064-8068.
Usui, I.; Schmidt, S.; Keller, M.; Breit, B. Allylation of N-heterocycles with allylic alcohols employing self-assembling palladium phosphane catalysts. Org. Lett., 2008, 10, 1207-1210.
Gumrukcu, Y.; de Bruin, B.; Reek, J.N.H. Hydrogen-bond-assisted activation of allylic alcohols for palladium-catalyzed coupling reactions. ChemSusChem, 2014, 7, 890-896.
Sakamoto, M.; Shimizu, I.; Yamamoto, A. Activation of C-O and C-N bonds in allylic alcohols and amines by palladium complexes promoted by CO2. Synthetic applications to allylation of nucleophiles, carbonylation, and allylamine disproportionation. Bull. Chem. Soc. Jpn., 1996, 69, 1065-1078.
Lang, S.B.; Locascio, T.M.; Tunge, J.A. Activation of alcohols with carbon dioxide: Intermolecular allylation of weakly acidic pronucleophiles. Org. Lett., 2014, 16, 4308-4311.
Ozawa, F.; Okamoto, H.; Kawagishi, S.; Yamamoto, S.; Minami, T.; Yoshifuji, M. (π-Allyl)palladium complexes bearing diphosphinidenecyclobutene ligands (DPCB): Highly active catalysts for direct conversion of allylic alcohols. J. Am. Chem. Soc., 2002, 124, 10968-10969.
Kayaki, Y.; Koda, T.; Ikariya, T. Halide-free dehydrative allylation using allylic alcohols promoted by a palladium-triphenyl phosphite catalyst. J. Org. Chem., 2004, 69, 2595-2597.
Thoumazet, C.; Grützmacher, H.; Deschamps, B.; Ricard, L.; le Floch, P. Testing phosphanes in the palladium-catalysed allylation of secondary and primary amines. Eur. J. Inorg. Chem., 2006, 19, 3911-3922.
Sarkar, A.; Ghosh, R. Palladium-catalyzed amination of allylic alcohols. J. Org. Chem., 2011, 76, 8508-8512.
Tao, Y.; Wang, B.; Wang, B.; Qu, L.; Qu, J. Highly efficient and regioselective allylation with allylic alcohols catalyzed by [Mo3S4Pd(h3-allyl)] clusters. Org. Lett., 2010, 12, 2726-2729.
(a) Sawadjoon, S.; Samec, J.S.M. An atom efficient route to N-aryl and N-alkyl pyrrolines by transition metal catalysis. Org. Biomol. Chem., 2011, 9, 2548-2554.
(b) Sawadjoon, S.; Sjöberg, P.J.R.; Orthaber, A.; Matsson, O.; Samec, J.S.M. Mechanistic insights into the Pd-catalyzed direct amination of allyl alcohols: Evidence for an outer-sphere mechanism involving a palladium hydride intermediate. Chem. Eur. J., 2014, 20, 1520-1524.
(c) Sawadjoon, S.; Orthaber, A.; Sjöberg, P.J.R.; Eriksson, L.; Samec, J.S.M. Equilibrium study of Pd(dba)2 and P(OPh)3 in the Pd-catalyzed allylation of aniline by allyl alcohol. Organometallics, 2014, 33, 249-253.
For an alternative mechanism of the direct amination catalyzed by Ozawa complexes, see: Piechaczyk, O.; Thoumazet, C.; Jean, Y.; le Floch, P. DFT Study on the palladium-catalyzed allylation of primary amines by allylic alcohol. J. Am. Chem. Soc., 2006, 128, 14306-143171.
Tsupova, S.; Mäeorg, U. Pd-catalyzed regioselective allylation of mono- and disubstituted hydrazines. Org. Lett., 2013, 15, 3381-3383.
Lorion, M.M.; Gasperin, D.; Oble, J.; Poli, G. Palladium-catalyzed arylic/allylic aminations: Permutable domino sequences for the synthesis of dihydroquinolines from Morita-Baylis-Hillman adducts. Org. Lett., 2013, 15, 3050-3053.
Wang, M.; Xie, Y.; Li, J.; Huang, H. Palladium-catalyzed direct amination of allylic alcohols at room temperature. Synlett, 2014, 25, 2781-2786.
Banerjee, D.; Jagadeesh, R.V.; Junge, K.; Junge, H.; Beller, M. An efficient and convenient palladium catalyst system for the synthesis of amines from allylic alcohols. ChemSusChem, 2012, 5, 2039-2044.
Banerjee, D.; Jagadeesh, R.J.; Junge, K.; Junge, H.; Beller, M. Efficient and convenient palladium-catalyzed amination of allylic alcohols with N-heterocycles. Angew. Chem. Int. Ed., 2012, 124, 11724-11728.
(a) Hatanaka, Y.; Hiyama, T. Cross-coupling of organosilanes with organic halides mediated by palladium catalyst and tris(diethylamino)sulfonium difluorotrimethylsilicate. J. Org. Chem., 1988, 53, 918-920.
(b) Miyaura, N.; Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev., 1995, 95, 2457-2483.
(a) Ishiyama, T.; Ahiko, T.A.; Miyaura, N.A. A synthesis of allylboronates via the palladium(0)-catalyzed cross-coupling reaction of bis(pinacolato)diboron with allylic acetates. Tetrahedron Lett., 1996, 38, 6889-6892.
(b) Tsuji, Y.; Funato, M.; Ozawa, M.; Ogiyama, H.; Kajita, S.; Kawamura, T. Silylation of allylic trifluoroacetates and acetates using organodisilanes catalyzed by palladium complex. J. Org. Chem., 1996, 61, 5779-5787.
(a) Selander, N.; Jennifer, R.; Paasch, J.R.J.; Szabó, K.J. Palladium-catalyzed allylic C−OH functionalization for efficient synthesis of functionalized allylsilanes. J. Am. Chem. Soc., 2011, 133, 409-411.
(b) Larsson, J.M.; Szabó, K.J. Mechanistic investigation of the palladium-catalyzed synthesis of allylic silanes and boronates from allylic alcohols. J. Am. Chem. Soc., 2013, 135, 443-455.
Gumrukcu, Y.; de Bruin, B.; Reek, J.N.H. Dehydrative cross-coupling reactions of allylic alcohols with olefins. Chem. Eur. J., 2014, 20, 10905-10909.
Kinoshita, H.; Shinokubo, H.; Oshima, K. Water enables direct use of allyl alcohol for Tsuji-Trost reaction without activators. Org. Lett., 2004, 6, 4085-4088.
Wagh, Y.S.; Sawant, D.N.; Dhake, K.P.; Bhanage, B.M. Direct allylic amination of allylic alcohols with aromatic/aliphatic amines using Pd/TPPTS as an aqueous phase recyclable catalyst. Catal. Sci. Technol., 2012, 2, 835-840.
Shue, Y.J.; Yang, S.C. Activator-free and one-pot C-allylation by simple palladium catalyst in water. Tetrahedron Lett., 2012, 53, 1380-1384.
For previous selected examples on direct alcohol substitution carried out in aqueous media, see: (a) Nishikata, T.; Lipshutz, B.H. Amination of allylic alcohol in water at room temperature. Org. Lett., 2009, 11, 2377-2379.
(b) Hirakawa, H.; Yokoyama, Y. Palladium-catalyzed mono-N-allylation of unprotected anthranilic acids with allylic alcohols in aqueous media. J. Org. Chem., 2011, 76, 8433-8439.
(c) Hirakawa, H.; Yokoyama, Y. Palladium-catalyzed mono-N-allylation of unprotected amino acids with 1,1-dimethylallyl alcohol in water. Org. Biomol. Chem., 2011, 9, 4044-4050.
Huo, X.; Yang, G.; Liu, D.; Liu, Y.; Gridnev, I.D.; Zhang, W. Palladium-catalyzed allylic alkylation of simple ketones with allylic alcohols and its mechanistic study. Angew. Chem. Int. Ed., 2014, 53, 6776-6780.
Huo, X.; Quan, M.; Yang, G.; Zhao, X.; Liu, D.; Liu, Y.; Zhang, W. Hydrogen-bond-activated palladium-catalyzed allylic alkylation via allylic alkyl ethers: challenging leaving groups. Org. Lett., 2014, 16, 1570-1573. For other reports on the use of allylic ethers as coupling partners in Tsuji-Trost type reactions, see: (a) Nishikata, T.; Lipshutz, B.H. Aminations of allylic phenyl ethers via micellar catalysis at room temperature in water. Chem. Commun., 2009, 48, 6472-6474. (b) Mukai, R.; Horino, Y.; Tanaka, S.; Tamaru, Y.; Kimura, M. Pd(0)-Catalyzed amphiphilic activation of bis-allyl alcohol and ether. J. Am. Chem. Soc., 2004, 126, 11138-11139. (c) Hosokawa, T.; Kono, T.; Uno, T.; Murahashi, S.I. Palladium-catalyzed reaction of 2-vinyl-2,3-dihydrobenzofurans and chroman with nucleophiles. Bull. Chem. Soc. Jpn., 1986, 59, 2191-2193.
Atkins, K.E.; Walker, W.E.; Manyik, R.M. Palladium-catalyzed transfer of allylic groups. Tetrahedron Lett., 1970, 43, 3821-3824.
Hirao, T.; Yamada, N.; Ohshiro, Y.; Agawa, T. Palladium-catalyzed reaction of allylic ammonium bromides with nucleophiles. J. Organomet. Chem., 1982, 236, 409-414.
Yamamoto, T.; Akimoto, M.; Saito, O.; Yamamoto, A. Interaction of palladium(0) complexes with allylic acetates, allyl ethers, allyl phenyl chalcogenides, allylic alcohols, and allylamines. Oxidative addition, condensation, disproportionation, and p-complex formation. Organometallics, 1986, 5, 1559-1567.
(a) Murahashi, S.I.; Makabe, Y. Palladium(0) catalyzed 3-aza-cope rearrangement of N-allylenamines. Tetrahedron Lett., 1985, 26, 5563-5566.
(b) Murahashi, S.I.; Makabe, Y.; Kunita, K. Palladium(0)-catalyzed rearrangement of N-allylenamines. Synthesis of d,e−unsaturated imines and g,d-unsaturated carbonyl compounds. J. Org. Chem., 1988, 53, 4489-4495.
Mukherjee, S.; List, B. Chiral counteranions in asymmetric transition-metal catalysis: Highly enantioselective Pd/Broensted acid-catalyzed direct a-allylation of aldehydes. J. Am. Chem. Soc., 2007, 129, 11336-11337.
Li, M.B.; Li, H.; Wang, J.; Liu, C.R.; Tian, S.K. Catalytic stereospecific alkylation of malononitriles with enantioenriched primary allylic amines. Chem. Commun. , 2013, 49, 8190-8192.
Wang, Y.; Xu, J.X.; Gu, Y.; Tian, S.K. Catalytic stereospecific allylation of protected hydrazines with enantioenriched primary allylic amines. Org. Chem. Front., 2014, 1, 812-816.
Wu, X.S.; Zhou, M.G.; Chen, Y.; Tian, S.K. Catalytic allylation of hypophosphorous acid and H-phosphinic acids with primary allylic amines. Asian J. Org. Chem., 2014, 3, 711-714.
(a) Åkermark, B.; Vitagliano, A. Reactivity and syn-anti isomerization of (h3-geranyl)- and (h3-neryl)palladium complexes. Evidence for electronic control of the regiochemistry of nucleophilic addition. Organometallics, 1985, 4, 1275-1283. [and references therein].
(b) Trost, B.M.; Keinan, E. Pyrrole annulation onto aldehydes and ketones via palladium-catalyzed reactions. J. Org. Chem., 1980, 45, 2746-2749.
(a) Watson, I.D.G.; Yu, L.; Yudin, A.K. Advances in nitrogen transfer reactions involving aziridines. Acc. Chem. Res., 2006, 39, 194-206.
(b) Dubovyk, I.; Pichugin, D.; Yudin, A.K. Palladium-catalyzed ring-contraction and ring-expansion reactions of cyclic allyl amines. Angew. Chem. Int. Ed., 2011, 50, 5924-5926.
(c) Dubovyk, I.; Watson, I.D.G.; Yudin, A.K. Achieving control over the branched/linear selectivity in palladium-catalyzed allylic amination. J. Org. Chem., 2013, 78, 1559-1575.
Li, M.B.; Wang, Y.; Tian, S.K. Regioselective and stereospecific cross-coupling of primary allylic amines with boronic acids and boronates through palladium catalyzed C−N bond cleavage. Angew. Chem. Int. Ed., 2012, 51, 2968-2971.
Wu, X.S.; Chen, Y.; Li, M.B.; Zhou, M.G.; Tian, S.K. Direct substitution of primary allylic Amines with sulfinate salts. J. Am. Chem. Soc., 2012, 134, 14694-14697.
Ma, X.T.; Wang, Y.; Dai, R.H.; Liu, C.R.; Tian, S.K. Catalytic allylation of stabilized phosphonium ylides with primary allylic amines. J. Org. Chem., 2013, 78, 11071-11075.
Zhao, X.; Liu, D.; Guo, H.; Liu, Y.; Zhang, W. C-N bond cleavage of allylic amines via hydrogen bond activation with alcohol solvents in Pd-catalyzed allylic alkylation of carbonyl compounds. J. Am. Chem. Soc., 2011, 133, 19354-19357.

Rights & Permissions Print Export Cite as
© 2023 Bentham Science Publishers | Privacy Policy