Abstract
The successful derivation of human embryonic stem cell (hESC) lines by Thomson and colleagues [Thomson et al., 1998] provided a new area of investigation in both regenerative medicine and early human development. Fundamental study of the molecular and cellular mechanisms responsible for normal lineage development will rely on reproducible protocols to direct the differentiation of hESCs into specific lineages of interest and genetically manipulate both hESCs and their derivatives. Identifying standards for maintenance of hESCs, methods for controlled differentiation and genetic manipulation of hESCs and their derivatives will provide a foundation to explore their potential therapeutic use in cell and gene therapy. In the present review, our goal is to outline the latest advances in the field with particular focus on how hESCs and their derivatives can be genetically altered, how this may be useful in better understanding the cellular and molecular events of lineage differentiation, and how deregulation of these cellular processes may lead to abnormal development and disease.
Keywords: human embryonic stem cells, differentiation, genetic manipulation, developmental biology, cell therapy, gene therapy
Current Gene Therapy
Title: Genetic Manipulation of Human Embryonic Stem Cells: A System to Study Early Human Development and Potential Therapeutic Applications
Volume: 5 Issue: 4
Author(s): Pablo Menendez, Lisheng Wang and Mickie Bhatia
Affiliation:
Keywords: human embryonic stem cells, differentiation, genetic manipulation, developmental biology, cell therapy, gene therapy
Abstract: The successful derivation of human embryonic stem cell (hESC) lines by Thomson and colleagues [Thomson et al., 1998] provided a new area of investigation in both regenerative medicine and early human development. Fundamental study of the molecular and cellular mechanisms responsible for normal lineage development will rely on reproducible protocols to direct the differentiation of hESCs into specific lineages of interest and genetically manipulate both hESCs and their derivatives. Identifying standards for maintenance of hESCs, methods for controlled differentiation and genetic manipulation of hESCs and their derivatives will provide a foundation to explore their potential therapeutic use in cell and gene therapy. In the present review, our goal is to outline the latest advances in the field with particular focus on how hESCs and their derivatives can be genetically altered, how this may be useful in better understanding the cellular and molecular events of lineage differentiation, and how deregulation of these cellular processes may lead to abnormal development and disease.
Export Options
About this article
Cite this article as:
Menendez Pablo, Wang Lisheng and Bhatia Mickie, Genetic Manipulation of Human Embryonic Stem Cells: A System to Study Early Human Development and Potential Therapeutic Applications, Current Gene Therapy 2005; 5 (4) . https://dx.doi.org/10.2174/1566523054546198
DOI https://dx.doi.org/10.2174/1566523054546198 |
Print ISSN 1566-5232 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5631 |

- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Recent Kinase and Kinase Inhibitor X-ray Structures: Mechanisms of Inhibition and Selectivity Insights
Current Medicinal Chemistry Neurodegenerative Disease: A Perspective on Cell-Based Therapy in the New Era of Cell-Free Nano-Therapy
Current Pharmaceutical Design in vitro Anti-leukaemia Activity of Pyrrolo[1,2-b][1,2,5]benzothiadiazepines (PBTDs)
Recent Patents on Anti-Cancer Drug Discovery Toll Like Receptors Signaling Pathways as a Target for Therapeutic Interventions
Current Signal Transduction Therapy Posttranslational Regulation of O6-Methylguanine-DNA Methyltransferase (MGMT) and New Opportunities for Treatment of Brain Cancers
Mini-Reviews in Medicinal Chemistry Bisacylimidoselenocarbamates Cause G2/M Arrest Associated with the Modulation of CDK1 and Chk2 in Human Breast Cancer MCF-7 Cells
Current Medicinal Chemistry Proteomics Annotation of Lipid Rafts Modified by Virus Infection
Combinatorial Chemistry & High Throughput Screening In Vitro and In Vivo Experimental Model-based Approaches for Investigating Anti-inflammatory Properties of Coumarins
Current Medicinal Chemistry Cationicity and Hydrophobicity Enhance the Cytotoxic Potency of Phoratoxin C Anticancer Peptide Analogues against Triple Negative Breast Cancer Cells
Current Bioactive Compounds Diterpenoids from Liverworts and their Biological Activities
Current Organic Chemistry Caffeic Acid, A Versatile Pharmacophore: An Overview
Mini-Reviews in Medicinal Chemistry The Yin and Yang of CD4+ Regulatory T Cells in Autoimmunity and Cancer
Current Medicinal Chemistry DLEU2: A Meaningful Long Noncoding RNA in Oncogenesis
Current Pharmaceutical Design Anti-Gene Strategies to Down-Regulate Gene Expression in Mammalian Cells
Current Pharmaceutical Design HSP90 Inhibitors: Multi-Targeted Antitumor Effects and Novel Combinatorial Therapeutic Approaches in Cancer Therapy
Current Medicinal Chemistry 2-Aminoimidazole, Glycociamidine and 2-Thiohydantoin-Marine Alkaloids as Molecular Inspirations for the Development of Lead Structures
Current Drug Targets The Role of Cellular Plasticity in Cancer Development
Current Medicinal Chemistry Editorial [Hot Topic: Oncohematology: From Bench to Bedside (Guest Editor: Vincenzo De Feo)]
Mini-Reviews in Medicinal Chemistry Antifolate Inhibitors of Thymidylate Synthase as Anticancer Drugs
Mini-Reviews in Medicinal Chemistry Pro-apoptotic Activity of BH3-only Proteins and BH3 Mimetics: from Theory to Potential Cancer Therapy
Anti-Cancer Agents in Medicinal Chemistry