Abstract
Previous studies have shown that recombinant snake venom cystatin (sv-cystatin) inhibits the invasion and metastasis of tumor cells in vitro and in vivo. The purpose of this study was to investigate the ability of recombinant sv-cystatin to inhibit tumor angiogenesis in vitro and in vivo, and the mechanisms underlying this effect. Recombinant sv-cystatin inhibited proliferation of human umbilical vein endothelial cells (HUVECs) at 100 and 200 μg/mL after 72, 96 and 120 h. Recombinant sv-cystatin also inhibited tumor–endothelial cell adhesion at 25, 50, 100 and 200 μg/mL. Recombinant sv-cystatin inhibited capillary-like tube formation by HUVECs at 10, 25, 50, 100 and 200 μg/mL following 12, 24 and 36 h incubation. Furthermore, recombinant sv-cystatin significantly suppressed microvessel density (MVD) of lung tumor colonies in C57BL/6 mice inoculated in the lateral tail vein with B16F10 melanoma cells. Administration of recombinant sv-cystatin significantly decreased MVD of primary tumor tissues in nude mice implanted subcutaneously with human hepatocellular carcinoma cells (MHCC97H). Exposure of B16F10 and MHCC97H cells to increasing doses of recombinant sv-cystatin suppressed secretion of vascular endothelial growth factor (VEGF)-A165 and basic fibroblast growth factor (bFGF) into the surrounding medium (P<0.05). The expression of fms-related tyrosine kinase 1 (Flt-1) protein in HUVECs was decreased by 25, 50, 100 and 200 μg/mL recombinant sv-cystatin (P<0.05). This study demonstrates that recombinant sv-cystatin inhibits tumor angiogenesis associated with downregulation of VEGF-A165, Flt-1 and bFGF. This suggests that recombinant sv-cystatin may have potential pharmaceutical applications as an antiangiogenic and antimetastatic therapeutic agent.
Keywords: Angiogenesis, Basic fibroblast growth factor, Cystatin, Endothelial cell, Fms-related tyrosine kinase 1, Snake venom, Vascular endothelial growth factor-A165
Anti-Cancer Agents in Medicinal Chemistry
Title:Recombinant Snake Venom Cystatin Inhibits Tumor Angiogenesis in vitro and in vivo Associated with Downregulation of VEGF-A165, Flt-1 and bFGF
Volume: 13 Issue: 4
Author(s): Qun Xie, Nanhong Tang, Rong Wan, Yuanlin Qi, Xu Lin and Jianyin Lin
Affiliation:
Keywords: Angiogenesis, Basic fibroblast growth factor, Cystatin, Endothelial cell, Fms-related tyrosine kinase 1, Snake venom, Vascular endothelial growth factor-A165
Abstract: Previous studies have shown that recombinant snake venom cystatin (sv-cystatin) inhibits the invasion and metastasis of tumor cells in vitro and in vivo. The purpose of this study was to investigate the ability of recombinant sv-cystatin to inhibit tumor angiogenesis in vitro and in vivo, and the mechanisms underlying this effect. Recombinant sv-cystatin inhibited proliferation of human umbilical vein endothelial cells (HUVECs) at 100 and 200 μg/mL after 72, 96 and 120 h. Recombinant sv-cystatin also inhibited tumor–endothelial cell adhesion at 25, 50, 100 and 200 μg/mL. Recombinant sv-cystatin inhibited capillary-like tube formation by HUVECs at 10, 25, 50, 100 and 200 μg/mL following 12, 24 and 36 h incubation. Furthermore, recombinant sv-cystatin significantly suppressed microvessel density (MVD) of lung tumor colonies in C57BL/6 mice inoculated in the lateral tail vein with B16F10 melanoma cells. Administration of recombinant sv-cystatin significantly decreased MVD of primary tumor tissues in nude mice implanted subcutaneously with human hepatocellular carcinoma cells (MHCC97H). Exposure of B16F10 and MHCC97H cells to increasing doses of recombinant sv-cystatin suppressed secretion of vascular endothelial growth factor (VEGF)-A165 and basic fibroblast growth factor (bFGF) into the surrounding medium (P<0.05). The expression of fms-related tyrosine kinase 1 (Flt-1) protein in HUVECs was decreased by 25, 50, 100 and 200 μg/mL recombinant sv-cystatin (P<0.05). This study demonstrates that recombinant sv-cystatin inhibits tumor angiogenesis associated with downregulation of VEGF-A165, Flt-1 and bFGF. This suggests that recombinant sv-cystatin may have potential pharmaceutical applications as an antiangiogenic and antimetastatic therapeutic agent.
Export Options
About this article
Cite this article as:
Xie Qun, Tang Nanhong, Wan Rong, Qi Yuanlin, Lin Xu and Lin Jianyin, Recombinant Snake Venom Cystatin Inhibits Tumor Angiogenesis in vitro and in vivo Associated with Downregulation of VEGF-A165, Flt-1 and bFGF, Anti-Cancer Agents in Medicinal Chemistry 2013; 13 (4) . https://dx.doi.org/10.2174/1871520611313040015
DOI https://dx.doi.org/10.2174/1871520611313040015 |
Print ISSN 1871-5206 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5992 |
Call for Papers in Thematic Issues
Advances in Nanomedicines and Targeted Therapies for Colorectal Cancer
Colorectal cancer remains a significant global health challenge, with high incidence and mortality rates despite advancements in treatment strategies. Conventional therapies often face limitations such as systemic toxicity, drug resistance, and suboptimal targeting. The advent of nanomedicines and innovative drug delivery systems offers new hope for overcoming these challenges and ...read more
Designing Novel Molecules for Anti-Cancer Enzyme Modulation: A Mechanistic and Therapeutic Perspective
The deficiencies or hyper functions of enzymes cause a number of diseases. Enzyme inhibition is an important area of pharmaceutical research since studies in this field have already led to the discovery of wide variety of drugs useful in a number of diseases. Specific inhibitors interact with enzymes and block ...read more
Discovery of Lead compounds targeting transcriptional regulation
Transcriptional regulation plays key physiological functions in body growth and development. Transcriptional dysregulation is one of the important biomarkers of tumor genesis and progression, which is involved in regulating tumor cell processes such as cell proliferation, differentiation, and apoptosis. Additionally, it plays a pivotal role in angiogenesis and promotes tumor ...read more
Heterocyclic Systems: Bridging Chemistry and Biology in Cancer Therapy
The thematic issue, "Heterocyclic Systems: Bridging Chemistry and Biology in Cancer Therapy," explores the critical role of heterocyclic compounds in advancing the frontiers of cancer treatment. Heterocycles serve as fundamental building blocks in medicinal chemistry due to their structural diversity and ability to interact with biological targets. This issue aims ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
Electron Spin Resonance as a Powerful Tool for Studying Antioxidants and Radicals
Current Medicinal Chemistry Management of the Menopausal Disturbances and Oxidative Stress
Current Pharmaceutical Design New Use for Old Drugs? Prospective Targets of Chloroquines in Cancer Therapy
Current Drug Targets Metal Based Frameworks for Drug Delivery Systems
Current Topics in Medicinal Chemistry Silica Nanoparticles as Promising Drug/Gene Delivery Carriers and Fluorescent Nano-Probes: Recent Advances
Current Cancer Drug Targets Role of Inflammation in the Development of Colorectal Cancer
Endocrine, Metabolic & Immune Disorders - Drug Targets Patent Selections
Recent Patents on Anti-Infective Drug Discovery Hepatitis B Virus X Protein Modulates Chemokine CCL15 Upregulation in Hepatocellular Carcinoma
Anti-Cancer Agents in Medicinal Chemistry Chemotherapy and Molecular Therapy in Non-Melanoma Skin Cancer
Current Cancer Therapy Reviews Rationale for New Drugs Targeting the Tissue Microenvironment in Patients with HCC
Current Pharmaceutical Design Muscarinic Acetylcholine Receptors: Relevance to Infertility and Male Contraception
Immunology, Endocrine & Metabolic Agents in Medicinal Chemistry (Discontinued) Ginsenoside Rh2 Inhibits Migration of Lung Cancer Cells under Hypoxia via mir-491
Anti-Cancer Agents in Medicinal Chemistry Apoptosis-related BCL2-family Members: Key Players in Chemotherapy
Anti-Cancer Agents in Medicinal Chemistry Homocysteine and Cerebral Stroke in Developing Countries
Current Medicinal Chemistry Environmental Exposure, and Other Behavioral Risk Factors in Breast Cancer
Current Cancer Therapy Reviews Therapeutic Agents Based on DNA Sequence Specific Binding
Current Topics in Medicinal Chemistry A Concise Review on the Role of Natural and Synthetically Derived Peptides in Colorectal Cancer
Current Topics in Medicinal Chemistry The Cancer Related Thrombotic Tendency in Sepsis
Current Drug Targets Nanostructures for Bypassing Blood Brain Barrier
Current Bioactive Compounds Targeted and Armed Oncolytic Poxviruses for Cancer: the Lead Example of JX-594
Current Pharmaceutical Biotechnology