Abstract
The role of palmitoylethanolamide (PEA) in the regulation of complex systems involved in the inflammatory response, pruritus, neurogenic and neuropathic pain is well understood. Growing evidence indicates that this Nacylethanolamine also exerts neuroprotective effects within the central nervous system (CNS), i.e. in spinal cord and traumatic brain injuries and in age-related pathological processes. PEA is abundant in the CNS, and is produced by glial cells. Several studies show that administering PEA during the first few hours after injury significantly limits CNS damage, reduces loss of neuronal tissue and improves functional recovery. PEA appears to exert its protective effect by decreasing the development of cerebral edema, down-regulating the inflammatory cascade, and limiting cellular necrosis and apoptosis. All these are plausible mechanisms of neuroprotection. This review provides an overview of current knowledge of PEA effect on glial functions in the brain and how targeting glial-specific pathways might ultimately impact the development of therapies for clinical management of neurodegenerative disorders. The diverse signaling mechanisms are also summarized.
Keywords: Glial cells, N-acylethanolamine, neuroprotection, spinal cord
CNS & Neurological Disorders - Drug Targets
Title:Palmitoylethanolamide in Homeostatic and Traumatic Central Nervous System Injuries
Volume: 12 Issue: 1
Author(s): Emanuela Esposito and Salvatore Cuzzocrea
Affiliation:
Keywords: Glial cells, N-acylethanolamine, neuroprotection, spinal cord
Abstract: The role of palmitoylethanolamide (PEA) in the regulation of complex systems involved in the inflammatory response, pruritus, neurogenic and neuropathic pain is well understood. Growing evidence indicates that this Nacylethanolamine also exerts neuroprotective effects within the central nervous system (CNS), i.e. in spinal cord and traumatic brain injuries and in age-related pathological processes. PEA is abundant in the CNS, and is produced by glial cells. Several studies show that administering PEA during the first few hours after injury significantly limits CNS damage, reduces loss of neuronal tissue and improves functional recovery. PEA appears to exert its protective effect by decreasing the development of cerebral edema, down-regulating the inflammatory cascade, and limiting cellular necrosis and apoptosis. All these are plausible mechanisms of neuroprotection. This review provides an overview of current knowledge of PEA effect on glial functions in the brain and how targeting glial-specific pathways might ultimately impact the development of therapies for clinical management of neurodegenerative disorders. The diverse signaling mechanisms are also summarized.
Export Options
About this article
Cite this article as:
Esposito Emanuela and Cuzzocrea Salvatore, Palmitoylethanolamide in Homeostatic and Traumatic Central Nervous System Injuries, CNS & Neurological Disorders - Drug Targets 2013; 12 (1) . https://dx.doi.org/10.2174/1871527311312010010
DOI https://dx.doi.org/10.2174/1871527311312010010 |
Print ISSN 1871-5273 |
Publisher Name Bentham Science Publisher |
Online ISSN 1996-3181 |
Call for Papers in Thematic Issues
Heart and Brain Axis Targets in CNS Neurological Disorders
Recently there has been a surge of interest in delving deeper into the complex interplay between the heart and brain. This fascination stems from a growing recognition of the profound influence each organ holds over the other, particularly in the realm of central nervous system (CNS) neurological disorders. The purpose ...read more
Lifestyle Interventions to Prevent and Treat Cognitive Impairment and Dementia
More than 55 million people live with dementia worldwide. By 2050, the population affected by dementia will exceed 139 million individuals. Mild cognitive impairment (MCI) is a pre-dementia stage, also known as prodromal dementia, affecting older adults. MCI emerges years before the manifestation of dementia but can be avoidable and ...read more
Pathogenic Proteins in Neurodegenerative Diseases: From Mechanisms to Treatment Modalities
The primary objective of this thematic issue is to elucidate the molecular mechanisms by which pathogenic proteins contribute to neurodegenerative diseases and to highlight current and emerging therapeutic strategies aimed at mitigating their effects. By bringing together cutting-edge research and reviews, this issue aims to: 1.Enhance Understanding: Provide a comprehensive ...read more
Role of glial cells in autism spectrum disorder: Molecular mechanism and therapeutic approaches
Emerging evidence suggests that glial cells may play a pivotal role in neuroanatomical and behavioral changes found in autism spectrum disorder (ASD). Many individuals with ASD experience a neuro-immune system abnormalities throughout life, which implicates a potential role of microglia in the pathogenesis of ASD. Dysfunctional astrocytes and oligodendrocytes were ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
Sestrins: A New Kid for Stroke Treatment?
Current Drug Delivery Targeting PPAR Isoforms Following CNS Injury
Current Drug Targets Pharmacology of L-type Calcium Channels: Novel Drugs for Old Targets?
Current Molecular Pharmacology A Closer Look to Polyesters: Properties, Synthesis, Characterization, and Particle Drug Delivery Applications
Nanoscience & Nanotechnology-Asia Brain Drug Delivery: Overcoming the Blood-brain Barrier to Treat Tauopathies
Current Pharmaceutical Design Recent Developments in Receptor-Selective Retinoids
Current Pharmaceutical Design Blockage of Central Sphingosine-1-phosphate Receptor does not Abolish the Protective Effect of FTY720 in Early Brain Injury after Experimental Subarachnoid Hemorrhage
Current Drug Delivery Peroxisome Proliferator-Activated Receptor (PPAR) in Regenerative Medicine: Molecular Mechanism for PPAR in Stem Cells’ Adipocyte Differentiation
Current Stem Cell Research & Therapy Kynurenine Pathway and Disease: An Overview
CNS & Neurological Disorders - Drug Targets Tau Therapeutic Strategies for the Treatment of Alzheimers Disease
Current Topics in Medicinal Chemistry Molecular Links Between Endothelial Dysfunction and Neurodegeneration in Alzheimer's Disease
Current Alzheimer Research Fatty Acids and Effects on In Vitro and In Vivo Models of Liver Steatosis
Current Medicinal Chemistry Imatinib Mesylate: An Innovation in Treatment of Autoimmune Diseases
Recent Patents on Inflammation & Allergy Drug Discovery Vulnerable Plaque Versus Vulnerable Patient: Emerging Blood Biomarkers for Risk Stratification
Endocrine, Metabolic & Immune Disorders - Drug Targets TGF-β Pathway as a Potential Target in Neurodegeneration and Alzheimers
Current Alzheimer Research The Endocrine Function of Adipose Tissue
Current Medicinal Chemistry - Immunology, Endocrine & Metabolic Agents Nanoparticles in the Treatment of Mental Disorders: A New Tool in the Psychiatric Medication
Current Topics in Medicinal Chemistry Synthetic and Biological Aspects of Thiadiazoles and their Condensed Derivatives: An Overview
Current Topics in Medicinal Chemistry Brain Damage in the Preterm Infant: Clinical Aspects and Recent Progress in the Prevention and Treatment
CNS & Neurological Disorders - Drug Targets Commendation of Diligence A Legend in Neuroscience (1948-2018) Dr. Stephen D. Skaper, Ph.D
CNS & Neurological Disorders - Drug Targets