Abstract
Treatment of cancer is by no means universally successful and often manifests harmful side effects. The best way to improve the success rate and reduce the side effects would be to develop compounds that are able to kill cancer cells while leaving normal cells unaffected. In this respect, mitocans (an acronym from ‘mitochondria’ and ‘cancer’), a summary term we proposed for compounds that induce cell death by targeting mitochondria, show an encouraging trend. Here we provide an overview of mitocans specific for the mitochondrial electron transport chain. These mitocans are particularly interesting, because a frequent consequence of electron transport chain inhibition is the induction of superoxide formation resulting in the preferential killing of cancer cells, as these tend to be more sensitive than normal cells to sudden increases in oxidative stress. Furthermore, macromolecular complexes of the electron transport chain only rarely mutate in cancer, and represent useful targets for anti-cancer drug development when widely-applicable agents are sought.
Keywords: Cancer; mitochondria, electron transport chain, oxidative stress, cancer, anti-cancer drug development, tricarboxylic acid cycle (TCA), ROS formation, target specific regulatory proteins/pathways, chronic myeloid leukemia
Current Pharmaceutical Biotechnology
Title:Targeting the Mitochondrial Electron Transport Chain Complexes for the Induction of Apoptosis and Cancer Treatment
Volume: 14 Issue: 3
Author(s): Jakub Rohlena, Lan-feng Dong and Jiri Neuzil
Affiliation:
Keywords: Cancer; mitochondria, electron transport chain, oxidative stress, cancer, anti-cancer drug development, tricarboxylic acid cycle (TCA), ROS formation, target specific regulatory proteins/pathways, chronic myeloid leukemia
Abstract: Treatment of cancer is by no means universally successful and often manifests harmful side effects. The best way to improve the success rate and reduce the side effects would be to develop compounds that are able to kill cancer cells while leaving normal cells unaffected. In this respect, mitocans (an acronym from ‘mitochondria’ and ‘cancer’), a summary term we proposed for compounds that induce cell death by targeting mitochondria, show an encouraging trend. Here we provide an overview of mitocans specific for the mitochondrial electron transport chain. These mitocans are particularly interesting, because a frequent consequence of electron transport chain inhibition is the induction of superoxide formation resulting in the preferential killing of cancer cells, as these tend to be more sensitive than normal cells to sudden increases in oxidative stress. Furthermore, macromolecular complexes of the electron transport chain only rarely mutate in cancer, and represent useful targets for anti-cancer drug development when widely-applicable agents are sought.
Export Options
About this article
Cite this article as:
Rohlena Jakub, Dong Lan-feng and Neuzil Jiri, Targeting the Mitochondrial Electron Transport Chain Complexes for the Induction of Apoptosis and Cancer Treatment, Current Pharmaceutical Biotechnology 2013; 14 (3) . https://dx.doi.org/10.2174/1389201011314030011
DOI https://dx.doi.org/10.2174/1389201011314030011 |
Print ISSN 1389-2010 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4316 |
Call for Papers in Thematic Issues
Artificial Intelligence in Bioinformatics
Bioinformatics is an interdisciplinary field that analyzes and explores biological data. This field combines biology and information system. Artificial Intelligence (AI) has attracted great attention as it tries to replicate human intelligence. It has become common technology for analyzing and solving complex data and problems and encompasses sub-fields of machine ...read more
Latest Advancements in Biotherapeutics.
The scope of this thematic issue is to comprehensively explore the rapidly evolving landscape of biotherapeutics, emphasizing breakthroughs in precision medicine. Encompassing diverse therapeutic modalities, the issue will delve into the latest developments in monoclonal antibodies, CRISPR/Cas gene editing, CAR-T cell therapies, and innovative drug delivery systems, such as nanoparticle-based ...read more
Machine Learning and Artificial Intelligence for Medical Data Analysis and Human Information Analysis in Healthcare
The intersection of machine learning (ML) and artificial intelligence (AI) with the pharmaceutical industry is revolutionizing traditional paradigms in drug discovery and development. These technologies have introduced innovative approaches to analyzing complex datasets and predicting chemical properties, leading to more efficient identification and optimization of drug candidates. By employing sophisticated ...read more

- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
Effects of Specific Cyclooxygenase-2 Inhibitors on Carcinogenesis
Medicinal Chemistry Reviews - Online (Discontinued) In Silico Transcriptomic Analysis of the Chloride Intracellular Channels (CLIC) Interactome Identifies a Molecular Panel of Seven Prognostic Markers in Patients with Pancreatic Ductal Adenocarcinoma
Current Genomics Potential of Taming MicroRNA on Driver Seat to Control Mitochondrial Horses in Breast Carcinoma
MicroRNA How Inhaled Asbestos Causes Scarring and Cancer
Current Respiratory Medicine Reviews Mesenchymal Stem Cells Promote Caspase Expression in Molt-4 Leukemia Cells <i>Via</i> GSK-3α/Β and ERK1/2 Signaling Pathways as a Therapeutic Strategy
Current Gene Therapy Role of miRNAs in Cancer Diagnostics and Therapy: A Recent Update
Current Pharmaceutical Design Methanol and Sorbitol Affect the Molecular Dynamics of Arginine Deiminase: Insights for Improving its Stability
Current Proteomics Biomarkers in Molecularly Targeted Therapy for Cancer
Recent Patents on Biomarkers Drug Delivery Systems for Brain Tumor Therapy
Current Pharmaceutical Design Vascular Injury During Elevated Glucose can be Mitigated by Erythropoietin and Wnt Signaling
Current Neurovascular Research Clinical Significance of Mesothelin in Pancreatic Cancer
Current Signal Transduction Therapy Bcl-2 Inhibitors: Emerging Drugs in Cancer Therapy
Current Medicinal Chemistry The Pharmacological Treatment of Cachexia
Current Drug Targets Cyclin-Dependent Kinase as a Novel Therapeutic Target: An Endless Story
Current Chemical Biology Antibody-Targeted RNase Fusion Proteins (ImmunoRNases) for Cancer Therapy
Current Pharmaceutical Biotechnology Metal Complexes, their Cellular Targets and Potential for Cancer Therapy
Current Pharmaceutical Design Plasminogen Activator System and Vascular Disease
Current Vascular Pharmacology Studies of p53 Tumor Suppression Activity in Mouse Models
Current Genomics Subject Index to Volume 4
Current Medicinal Chemistry - Anti-Cancer Agents Astrocytes: Adhesion Molecules and Immunomodulation
Current Drug Targets