Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Drug Discovery Applications for KNIME: An Open Source Data Mining Platform

Author(s): Michael P. Mazanetz, Robert J. Marmon, Catherine B. T. Reisser and Inaki Morao

Volume 12, Issue 18, 2012

Page: [1965 - 1979] Pages: 15

DOI: 10.2174/1568026611212180004

Price: $65

conference banner
Abstract

Technological advances in high-throughput screening methods, combinatorial chemistry and the design of virtual libraries have evolved in the pursuit of challenging drug targets. Over the last two decades a vast amount of data has been generated within these fields and as a consequence data mining methods have been developed to extract key pieces of information from these large data pools. Much of this data is now available in the public domain. This has been helpful in the arena of drug discovery for both academic groups and for small to medium sized enterprises which previously would not have had access to such data resources. Commercial data mining software is sometimes prohibitively expensive and the alternate open source data mining software is gaining momentum in both academia and in industrial applications as the costs of research and development continue to rise. KNIME, the Konstanz Information Miner, has emerged as a leader in open source data mining tools. KNIME provides an integrated solution for the data mining requirements across the drug discovery pipeline through a visual assembly of data workflows drawing from an extensive repository of tools. This review will examine KNIME as an open source data mining tool and its applications in drug discovery.

Keywords: Bioinformatics, cheminformatics, computational chemistry, data mining, drug discovery, KNIME.


Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy