Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Effect of Roughness of Confining Surface on Diffusive Motion of Fluid

Author(s): K. Tankeshwar and Sunita Srivastava

Volume 4, Issue 1, 2012

Page: [25 - 28] Pages: 4

DOI: 10.2174/1876402911204010025

Price: $65

Abstract

We propose a model to study self-diffusion of fluid confined between two rough walls. The model is based on microscopic considerations wherein the configuration space of the body systems is divided into cells. Within the cell, it executes harmonic motion unless it finds a saddle point on potential energy hypersurface. Results are obtained for Lennard Jones fluid for different order of rectangular and sinusoidal roughness of confining walls. It is found that the roughness of wall significantly affects the motion of fluid and reduces the average diffusion of particles in agreement with simulation results. The reduction is more for rectangular than for sinusoidal roughness. The study has applicability for fluids flowing in biological systems.

Keywords: Diffusion, roughness, nano channel, Lennard Jones fluid, harmonic motion


Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy