Abstract
Quinone moieties are present in many drugs such as anthracyclines, daunorubicin, doxorubicin, mitomycin, mitoxantrones and saintopin, which are used clinically in the therapy of solid cancers. The cytotoxic effects of these quinones are mainly due to the following two factors: (i) inhibition of DNA topoisomerase-II and, (ii) formation of semiquinone radical that can transfer an electron to oxygen to produce super oxide, which is catalyzed by flavoenzymes such as NADPH-cytochrome-P-450 reductase. Both semiquinone and super oxide of quinones can generate the hydroxyl radical, which is the cause of DNA strand breaks. 1,4-naphthoquinone contains two quinone groups that have the ability to accept one or two electrons to form the corresponding radical anion or di-anion species. It is probably dependent on the quinone redox cycling that yields "reactive oxygen species" (ROS) as well as arylation reactions, which is common to quinones for biological relevance. In the present review, an attempt has been made to collect the cytotoxicity data on different series of 1,4-naphthoquinones against four different cancer cell lines that are L1210, A549, SNU-1, and K562, which were acquired by using identical method, and has been discussed in terms of QSAR (quantitative structure-activity relationships) to understand the chemical-biological interactions. QSAR results have shown that the cytotoxic activities of 1,4- naphthoquinones depend largely on their hydrophobicity.
Keywords: Hydrophobicity, Molar refractivity, 1,4-Naphthoquinones, Quantitative structure-activity relationships
Anti-Cancer Agents in Medicinal Chemistry
Title: Anti-Cancer Activities of 1,4-Naphthoquinones: A QSAR Study
Volume: 6 Issue: 5
Author(s): Rajeshwar P. Verma
Affiliation:
Keywords: Hydrophobicity, Molar refractivity, 1,4-Naphthoquinones, Quantitative structure-activity relationships
Abstract: Quinone moieties are present in many drugs such as anthracyclines, daunorubicin, doxorubicin, mitomycin, mitoxantrones and saintopin, which are used clinically in the therapy of solid cancers. The cytotoxic effects of these quinones are mainly due to the following two factors: (i) inhibition of DNA topoisomerase-II and, (ii) formation of semiquinone radical that can transfer an electron to oxygen to produce super oxide, which is catalyzed by flavoenzymes such as NADPH-cytochrome-P-450 reductase. Both semiquinone and super oxide of quinones can generate the hydroxyl radical, which is the cause of DNA strand breaks. 1,4-naphthoquinone contains two quinone groups that have the ability to accept one or two electrons to form the corresponding radical anion or di-anion species. It is probably dependent on the quinone redox cycling that yields "reactive oxygen species" (ROS) as well as arylation reactions, which is common to quinones for biological relevance. In the present review, an attempt has been made to collect the cytotoxicity data on different series of 1,4-naphthoquinones against four different cancer cell lines that are L1210, A549, SNU-1, and K562, which were acquired by using identical method, and has been discussed in terms of QSAR (quantitative structure-activity relationships) to understand the chemical-biological interactions. QSAR results have shown that the cytotoxic activities of 1,4- naphthoquinones depend largely on their hydrophobicity.
Export Options
About this article
Cite this article as:
Verma P. Rajeshwar, Anti-Cancer Activities of 1,4-Naphthoquinones: A QSAR Study, Anti-Cancer Agents in Medicinal Chemistry 2006; 6 (5) . https://dx.doi.org/10.2174/187152006778226512
| DOI https://dx.doi.org/10.2174/187152006778226512 |
Print ISSN 1871-5206 |
| Publisher Name Bentham Science Publisher |
Online ISSN 1875-5992 |
Call for Papers in Thematic Issues
Advances in Nanomedicines and Targeted Therapies for Colorectal Cancer
Colorectal cancer remains a significant global health challenge, with high incidence and mortality rates despite advancements in treatment strategies. Conventional therapies often face limitations such as systemic toxicity, drug resistance, and suboptimal targeting. The advent of nanomedicines and innovative drug delivery systems offers new hope for overcoming these challenges and ...read more
Advances in Photosensitive Drugs, Herbal Medicine, and Nanotherapeutics for Targeted Cancer Therapy
This thematic issue focuses on cutting-edge research in photosensitive drugs, herbal medicine, and nanotechnology-based cancer therapies. It explores emerging trends in bibliometric analysis of photosensitizers, the role of herbal compounds in cancer networks, theranostic nanoprodrugs, phthalocyanine-based photodynamic therapy, nano-platforms for cancer treatment, and the design, synthesis, and PK-PD evaluation of ...read more
Designing Novel Molecules for Anti-Cancer Enzyme Modulation: A Mechanistic and Therapeutic Perspective
The deficiencies or hyper functions of enzymes cause a number of diseases. Enzyme inhibition is an important area of pharmaceutical research since studies in this field have already led to the discovery of wide variety of drugs useful in a number of diseases. Specific inhibitors interact with enzymes and block ...read more
Discovery Of Lead Compounds Targeting Transcriptional Regulation
Transcriptional regulation plays key physiological functions in body growth and development. Transcriptional dysregulation is one of the important biomarkers of tumor genesis and progression, which is involved in regulating tumor cell processes such as cell proliferation, differentiation, and apoptosis. Additionally, it plays a pivotal role in angiogenesis and promotes tumor ...read more
- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Sex Steroid Hormones, Cardiovascular Diseases and The Metabolic Syndrome
Cardiovascular & Hematological Agents in Medicinal Chemistry Contemporary Role of Endocrine Treatment in Patients with Localized or Locally Advanced Prostate Cancer: A Review
Current Cancer Therapy Reviews Adenosine Receptor Ligands on Cancer Therapy: A Review of Patent Literature
Recent Patents on Anti-Cancer Drug Discovery Conotoxins-New Vistas for Peptide Therapeutics
Current Pharmaceutical Design Editorial (Hot Topic: MiRNAs as Legitimate Targets for Cancer Therapy)
Current Drug Targets Human Whey Promotes Sessile Bacterial Growth, Whereas Alternative Sources of Infant Nutrition Promote Planktonic Growth
Current Nutrition & Food Science ACAT1 as a Therapeutic Target and its Genetic Relationship with Alzheimer's Disease
Current Alzheimer Research Determinants of Anti-Cancer Effect of Mitochondrial Electron Transport Chain Inhibitors: Bioenergetic Profile and Metabolic Flexibility of Cancer Cells
Current Pharmaceutical Design The AmpliChip: A Review of its Analytic and Clinical Validity and Clinical Utility
Current Drug Safety Deubiquitinating Enzyme Inhibitors and their Potential in Cancer Therapy
Current Cancer Drug Targets Vandetanib, A Dual Inhibitor of VEGFR and EGFR Tyrosine Kinase Activity
Current Cancer Therapy Reviews Respiration and Energy Homeostasis
Current Respiratory Medicine Reviews MR Imaging Findings of Uterine Cervical Carcinoma
Current Medical Imaging MicroRNA-136 Promotes Vascular Muscle Cell Proliferation Through the ERK1/2 Pathway by Targeting PPP2R2A in Atherosclerosis
Current Vascular Pharmacology Early Palliative Care in Advanced Oncologic and Non-Oncologic Chronic Diseases: A Systematic Review of Literature
Reviews on Recent Clinical Trials 4,7-Dihydroindole: A Synthon for the Preparations of 2-Substituted Indoles
Current Organic Synthesis Histone Deacetylase 2 in the Mouse Hippocampus: Attenuation of Age- Related Increase by Caloric Restriction
Current Alzheimer Research CXCR3, CXCR5, CXCR6, and CXCR7 in Diabetes
Current Drug Targets Targeting DNA Repair Proteins: A Promising Avenue for Cancer Gene Therapy
Current Gene Therapy Development of a Novel Reporter Gene Vector for Cell Based Angiogenic Studies
Combinatorial Chemistry & High Throughput Screening





