Abstract
Parasitic nematodes are a major cause of morbidity and mortality in man and also cause widespread loss of food production by infection of livestock. A milestone in the chemotherapy of nematode infections, especially in animals, was the discovery of the avermectins and milbemycins during the 1970s. Since the discovery of these highly active macrolides, reports of potent new classes of anthelmintics have been scarce. One of the most outstanding recently reported anthelmintics is the cyclooctadepsipeptide PF1022A, the most active member of a novel class of anthelmintic agents. During the past years several total syntheses of PF1022A and manifold structure-activity relationships have been established. Additionally, the biosynthesis of PF1022A has been elucidated and intensive investigations into the mode of action of this novel anthelmintic are underway. Comprehensive studies including cyclodepsipeptides with smaller ring-sizes, such as the enniatins, proved the PF1022 family and related cyclodepsipeptides to be the most promising follow-up candidates for the avermectins and milbemycins, which suffer from increasing nematode resistance.
Keywords: pf1022a, cyclodepsipeptide, anthelmintic, cyclodoctadepsipeptide, avermectin, milbemycin
Current Topics in Medicinal Chemistry
Title: PF1022A and Related Cyclodepsipeptides - A Novel Class of Anthelmintics
Volume: 2 Issue: 7
Author(s): Jurgen Scherkenbeck, Peter Jeschke and Achim Harder
Affiliation:
Keywords: pf1022a, cyclodepsipeptide, anthelmintic, cyclodoctadepsipeptide, avermectin, milbemycin
Abstract: Parasitic nematodes are a major cause of morbidity and mortality in man and also cause widespread loss of food production by infection of livestock. A milestone in the chemotherapy of nematode infections, especially in animals, was the discovery of the avermectins and milbemycins during the 1970s. Since the discovery of these highly active macrolides, reports of potent new classes of anthelmintics have been scarce. One of the most outstanding recently reported anthelmintics is the cyclooctadepsipeptide PF1022A, the most active member of a novel class of anthelmintic agents. During the past years several total syntheses of PF1022A and manifold structure-activity relationships have been established. Additionally, the biosynthesis of PF1022A has been elucidated and intensive investigations into the mode of action of this novel anthelmintic are underway. Comprehensive studies including cyclodepsipeptides with smaller ring-sizes, such as the enniatins, proved the PF1022 family and related cyclodepsipeptides to be the most promising follow-up candidates for the avermectins and milbemycins, which suffer from increasing nematode resistance.
Export Options
About this article
Cite this article as:
Scherkenbeck Jurgen, Jeschke Peter and Harder Achim, PF1022A and Related Cyclodepsipeptides - A Novel Class of Anthelmintics, Current Topics in Medicinal Chemistry 2002; 2 (7) . https://dx.doi.org/10.2174/1568026023393624
DOI https://dx.doi.org/10.2174/1568026023393624 |
Print ISSN 1568-0266 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4294 |
Call for Papers in Thematic Issues
Adaptogens—History and Future Perspectives
Adaptogens are pharmacologically active compounds or plant extracts that are associated with the ability to enhance the body’s stability against stress. The intake of adaptogens is associated not only with a better ability to adapt to stress and maintain or normalise metabolic functions but also with better mental and physical ...read more
AlphaFold in Medicinal Chemistry: Opportunities and Challenges
AlphaFold, a groundbreaking AI tool for protein structure prediction, is revolutionizing drug discovery. Its near-atomic accuracy unlocks new avenues for designing targeted drugs and performing efficient virtual screening. However, AlphaFold's static predictions lack the dynamic nature of proteins, crucial for understanding drug action. This is especially true for multi-domain proteins, ...read more
Artificial intelligence for Natural Products Discovery and Development
Our approach involves using computational methods to predict the potential therapeutic benefits of natural products by considering factors such as drug structure, targets, and interactions. We also employ multitarget analysis to understand the role of drug targets in disease pathways. We advocate for the use of artificial intelligence in predicting ...read more
Chemistry Based on Natural Products for Therapeutic Purposes
The development of new pharmaceuticals for a wide range of medical conditions has long relied on the identification of promising natural products (NPs). There are over sixty percent of cancer, infectious illness, and CNS disease medications that include an NP pharmacophore, according to the Food and Drug Administration. Since NP ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements