Abstract
As master regulators of lipid metabolism the peroxisome proliferator activated receptor (PPAR) family controls a wide variety of cellular processes, and thus it is not surprising that a large effort has focussed on discovering agents to pharmacologically modulate activity of these receptors. Early generation PPAR ligands, such as the fibrates and the thiazolidinediones (TZDs), were discovered empirically through an in vivo structure activity relationship exercise, whereas currently PPAR ligands are more often identified through target based structural design using cloned and expressed receptors. Regardless of how they were discovered, the development and clinical use of PPAR ligands throughout the last decade has greatly advanced understanding of the physiological function and therapeutic value of modulating these receptors. This review will briefly examine the PPAR family and then outline in greater detail select PPAR ligands indicated for the treatment of metabolic disorders.
Keywords: ppar Ligands, ppar family, thiazolidinediones, peroxisome proliferator activated receptor, metabolic disorders
Current Topics in Medicinal Chemistry
Title: PPAR Ligands for Metabolic Disorders
Volume: 3 Issue: 14
Author(s): Garret J. Etgen and Nathan Mantlo
Affiliation:
Keywords: ppar Ligands, ppar family, thiazolidinediones, peroxisome proliferator activated receptor, metabolic disorders
Abstract: As master regulators of lipid metabolism the peroxisome proliferator activated receptor (PPAR) family controls a wide variety of cellular processes, and thus it is not surprising that a large effort has focussed on discovering agents to pharmacologically modulate activity of these receptors. Early generation PPAR ligands, such as the fibrates and the thiazolidinediones (TZDs), were discovered empirically through an in vivo structure activity relationship exercise, whereas currently PPAR ligands are more often identified through target based structural design using cloned and expressed receptors. Regardless of how they were discovered, the development and clinical use of PPAR ligands throughout the last decade has greatly advanced understanding of the physiological function and therapeutic value of modulating these receptors. This review will briefly examine the PPAR family and then outline in greater detail select PPAR ligands indicated for the treatment of metabolic disorders.
Export Options
About this article
Cite this article as:
Etgen J. Garret and Mantlo Nathan, PPAR Ligands for Metabolic Disorders, Current Topics in Medicinal Chemistry 2003; 3 (14) . https://dx.doi.org/10.2174/1568026033451673
DOI https://dx.doi.org/10.2174/1568026033451673 |
Print ISSN 1568-0266 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4294 |
Call for Papers in Thematic Issues
Adaptogens—History and Future Perspectives
Adaptogens are pharmacologically active compounds or plant extracts that are associated with the ability to enhance the body’s stability against stress. The intake of adaptogens is associated not only with a better ability to adapt to stress and maintain or normalise metabolic functions but also with better mental and physical ...read more
Addressing the Most Common Causes of Death with Niacin/NAD and Inositol Polyphosphates
The most common causes of death in the world are cardiovascular disease (CVD) and cancer. These are perhaps best addressed by reducing lipodystrophy and blockages with niacin and inositol polyphosphates (e.g., IP6+inositol) respectively when addressing CVD. Niacin serves as a vitamin by virtue of its role as a skeletal precursor ...read more
AlphaFold in Medicinal Chemistry: Opportunities and Challenges
AlphaFold, a groundbreaking AI tool for protein structure prediction, is revolutionizing drug discovery. Its near-atomic accuracy unlocks new avenues for designing targeted drugs and performing efficient virtual screening. However, AlphaFold's static predictions lack the dynamic nature of proteins, crucial for understanding drug action. This is especially true for multi-domain proteins, ...read more
Artificial intelligence for Natural Products Discovery and Development
Our approach involves using computational methods to predict the potential therapeutic benefits of natural products by considering factors such as drug structure, targets, and interactions. We also employ multitarget analysis to understand the role of drug targets in disease pathways. We advocate for the use of artificial intelligence in predicting ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Resistance to Apoptosis: Mechanism for the Development of HIV Reservoirs
Current HIV Research Beyond Bile Acids: Targeting Farnesoid X Receptor (FXR) with Natural and Synthetic Ligands
Current Topics in Medicinal Chemistry Medicinal Chemistry and Pharmacological Effects of Farnesoid X Receptor (FXR) Antagonists
Current Topics in Medicinal Chemistry Cancer Regulator MicroRNA: Potential Relevance in Diagnosis, Prognosis and Treatment of Cancer
Current Medicinal Chemistry Current Outcomes and Considerations in Hypoplastic Left Heart Syndrome
Current Pediatric Reviews Herb-Drug Interactions and Hepatotoxicity
Current Drug Metabolism Contextualizing the Genes Altered in Bladder Neoplasms in Pediatric and Teen Patients Allows Identifying Two Main Classes of Biological Processes Involved and New Potential Therapeutic Targets
Current Genomics Protein Tyrosine Phosphatase SHP-2 as Drug Target
Mini-Reviews in Organic Chemistry Harnessing the Natural Pool of Polyketide and Non-ribosomal Peptide Family: A Route Map towards Novel Drug Development
Current Molecular Pharmacology Hydroximic Acid Derivatives: Pleiotropic Hsp Co-Inducers Restoring Homeostasis and Robustness
Current Pharmaceutical Design Involvement of Leukotriene Pathway in the Pathogenesis of Ischemia- Reperfusion Injury and Septic and Non-Septic Shock
Current Vascular Pharmacology Withdrawal Notice: Electrophoresis as a Tool for Early Cancer Diagnosis
Anti-Cancer Agents in Medicinal Chemistry Kidney in Diabetes: from Organ Damage Target to Therapeutic Target
Current Drug Metabolism Aetiology, Diagnosis and Treatment of Hydrops Foetalis
Current Pediatric Reviews Current and Proposed Biomarkers of Anthracycline Cardiotoxicity in Cancer: Emerging Opportunities in Oxidative Damage and Autophagy
Current Molecular Medicine Different Concepts of Drug Delivery in Disease Entities
Mini-Reviews in Medicinal Chemistry microRNAs-based Predictor Factor in Patients with Migraine-ischemic Stroke
MicroRNA Multitarget Network Strategies to Influence Memory and Forgetting: The Ras/Mapk Pathway as a Novel Option
Mini-Reviews in Medicinal Chemistry A Systems Biology Road Map for the Discovery of Drugs Targeting Cancer Cell Metabolism
Current Pharmaceutical Design Immunomodulatory Activity of MicroRNAs: Potential Implications for Multiple Myeloma Treatment
Current Cancer Drug Targets