Abstract
A quantitative ethnobotanical approach to antimalarial drug discovery led to the identification of Lansium domesticum Corr. Ser. (Meliaceae) as an important antimalarial used by Kenyah Dyak healers in Indonesian Borneo. Triterpenoid lansiolides with antimalarial activity were isolated from the bark and shown to have activity in both in vitro bioassays with Plasmodium falciparum, and in mice infected with P. berghei. A survey of African and tropical American Meliaceae led to further development of the limonoid gedunin from the traditionally used medicinal plants, tropical cedar, Cedrela odorata L., and neem, Azadirachta indica A. Juss. Gedunin has significant in vitro activity but initially showed poor in vivo activity. In vivo activity was improved by (1) incorporation into an easy to absorb suspension, (2) preparation of a more stable compound, 7-methoxygedunin; and (3) synergism with dillapiol, a cytochrome P450 3A4 inhibitor. The results show the potential for both antimalarial drug and phytomedicine development from traditionally used plants.
Keywords: Antimalarials, Meliaceae, Lansium domesticum, Plasmodium falciparum, Cedrela odorata, Azadirachta indica, 7-methoxygedunin, phytomedicine, cytochrome P450
Current Topics in Medicinal Chemistry
Title: Traditionally-Used Antimalarials from the Meliaceae
Volume: 3 Issue: 2
Author(s): S. Omar, J. Zhang, S. MacKinnon, D. Leaman, T. Durst, B. J.R. Philogene, J. T. Arnason, P. E. Sanchez-Vindas, L. Poveda, P. A. Tamez and J. M. Pezzuto
Affiliation:
Keywords: Antimalarials, Meliaceae, Lansium domesticum, Plasmodium falciparum, Cedrela odorata, Azadirachta indica, 7-methoxygedunin, phytomedicine, cytochrome P450
Abstract: A quantitative ethnobotanical approach to antimalarial drug discovery led to the identification of Lansium domesticum Corr. Ser. (Meliaceae) as an important antimalarial used by Kenyah Dyak healers in Indonesian Borneo. Triterpenoid lansiolides with antimalarial activity were isolated from the bark and shown to have activity in both in vitro bioassays with Plasmodium falciparum, and in mice infected with P. berghei. A survey of African and tropical American Meliaceae led to further development of the limonoid gedunin from the traditionally used medicinal plants, tropical cedar, Cedrela odorata L., and neem, Azadirachta indica A. Juss. Gedunin has significant in vitro activity but initially showed poor in vivo activity. In vivo activity was improved by (1) incorporation into an easy to absorb suspension, (2) preparation of a more stable compound, 7-methoxygedunin; and (3) synergism with dillapiol, a cytochrome P450 3A4 inhibitor. The results show the potential for both antimalarial drug and phytomedicine development from traditionally used plants.
Export Options
About this article
Cite this article as:
Omar S., Zhang J., MacKinnon S., Leaman D., Durst T., Philogene J.R. B., Arnason T. J., Sanchez-Vindas E. P., Poveda L., Tamez A. P. and Pezzuto M. J., Traditionally-Used Antimalarials from the Meliaceae, Current Topics in Medicinal Chemistry 2003; 3 (2) . https://dx.doi.org/10.2174/1568026033392499
DOI https://dx.doi.org/10.2174/1568026033392499 |
Print ISSN 1568-0266 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4294 |
Call for Papers in Thematic Issues
Adaptogens—History and Future Perspectives
Adaptogens are pharmacologically active compounds or plant extracts that are associated with the ability to enhance the body’s stability against stress. The intake of adaptogens is associated not only with a better ability to adapt to stress and maintain or normalise metabolic functions but also with better mental and physical ...read more
Addressing the Most Common Causes of Death with Niacin/NAD and Inositol Polyphosphates
The most common causes of death in the world are cardiovascular disease (CVD) and cancer. These are perhaps best addressed by reducing lipodystrophy and blockages with niacin and inositol polyphosphates (e.g., IP6+inositol) respectively when addressing CVD. Niacin serves as a vitamin by virtue of its role as a skeletal precursor ...read more
AlphaFold in Medicinal Chemistry: Opportunities and Challenges
AlphaFold, a groundbreaking AI tool for protein structure prediction, is revolutionizing drug discovery. Its near-atomic accuracy unlocks new avenues for designing targeted drugs and performing efficient virtual screening. However, AlphaFold's static predictions lack the dynamic nature of proteins, crucial for understanding drug action. This is especially true for multi-domain proteins, ...read more
Artificial intelligence for Natural Products Discovery and Development
Our approach involves using computational methods to predict the potential therapeutic benefits of natural products by considering factors such as drug structure, targets, and interactions. We also employ multitarget analysis to understand the role of drug targets in disease pathways. We advocate for the use of artificial intelligence in predicting ...read more

- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements