Abstract
Supertargeted chemistry is the study of how chemical structures localize or direct molecules to specific sub-cellular compartments in living cells. Supertargeting can be used to increase the activity or specificity of an inhibitor against its target, by concentrating the inhibitor in the particular organelle where the target is active. But, unlike structure-activity relationships, structure-localization relationships are not a simple function of compound concentration. Various aspects of mitochondrial physiology, proteomics and pharmacology have made this the organelle of choice for supertargeting studies. While exploration of supertargeting strategies to this and the other organelles has been limited, combinatorial chemical libraries of fluorescent molecules are beginning to illuminate new supertargeting mechanisms at the sub-cellular level. Moreover, predictive approaches that determine the relationship between a molecules features and sub-cellular localization are being developed in the related field of functional genomics. Applied to the small molecules, such strategies could prove useful for predicting structure-localization relationships amongst large libraries of compounds.
Keywords: supertargeting, mitochondria, endoplasmic reticulum, golgi, combinatorial chemistry, styryl, organelle, cell-based assay, high-content screening
Current Topics in Medicinal Chemistry
Title: Supertargeted Chemistry: Identifying Relationships Between Molecular Structures and their Sub-Cellular Distribution
Volume: 3 Issue: 6
Author(s): Gustavo R. Rosania
Affiliation:
Keywords: supertargeting, mitochondria, endoplasmic reticulum, golgi, combinatorial chemistry, styryl, organelle, cell-based assay, high-content screening
Abstract: Supertargeted chemistry is the study of how chemical structures localize or direct molecules to specific sub-cellular compartments in living cells. Supertargeting can be used to increase the activity or specificity of an inhibitor against its target, by concentrating the inhibitor in the particular organelle where the target is active. But, unlike structure-activity relationships, structure-localization relationships are not a simple function of compound concentration. Various aspects of mitochondrial physiology, proteomics and pharmacology have made this the organelle of choice for supertargeting studies. While exploration of supertargeting strategies to this and the other organelles has been limited, combinatorial chemical libraries of fluorescent molecules are beginning to illuminate new supertargeting mechanisms at the sub-cellular level. Moreover, predictive approaches that determine the relationship between a molecules features and sub-cellular localization are being developed in the related field of functional genomics. Applied to the small molecules, such strategies could prove useful for predicting structure-localization relationships amongst large libraries of compounds.
Export Options
About this article
Cite this article as:
Rosania R. Gustavo, Supertargeted Chemistry: Identifying Relationships Between Molecular Structures and their Sub-Cellular Distribution, Current Topics in Medicinal Chemistry 2003; 3 (6) . https://dx.doi.org/10.2174/1568026033452410
DOI https://dx.doi.org/10.2174/1568026033452410 |
Print ISSN 1568-0266 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4294 |
Call for Papers in Thematic Issues
Adaptogens—History and Future Perspectives
Adaptogens are pharmacologically active compounds or plant extracts that are associated with the ability to enhance the body’s stability against stress. The intake of adaptogens is associated not only with a better ability to adapt to stress and maintain or normalise metabolic functions but also with better mental and physical ...read more
Addressing the Most Common Causes of Death with Niacin/NAD and Inositol Polyphosphates
The most common causes of death in the world are cardiovascular disease (CVD) and cancer. These are perhaps best addressed by reducing lipodystrophy and blockages with niacin and inositol polyphosphates (e.g., IP6+inositol) respectively when addressing CVD. Niacin serves as a vitamin by virtue of its role as a skeletal precursor ...read more
AlphaFold in Medicinal Chemistry: Opportunities and Challenges
AlphaFold, a groundbreaking AI tool for protein structure prediction, is revolutionizing drug discovery. Its near-atomic accuracy unlocks new avenues for designing targeted drugs and performing efficient virtual screening. However, AlphaFold's static predictions lack the dynamic nature of proteins, crucial for understanding drug action. This is especially true for multi-domain proteins, ...read more
Artificial intelligence for Natural Products Discovery and Development
Our approach involves using computational methods to predict the potential therapeutic benefits of natural products by considering factors such as drug structure, targets, and interactions. We also employ multitarget analysis to understand the role of drug targets in disease pathways. We advocate for the use of artificial intelligence in predicting ...read more

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Prevalence of Cardiovascular and Metabolic Events in Patients Prescribed Clozapine: A Retrospective Observational, Clinical Cohort Study
Current Drug Safety Progress in Cardiac Magnetic Resonance Feature Tracking for Evaluating Myocardial Strain in Type-2 Diabetes Mellitus
Current Diabetes Reviews Cardio-Rheumatology: Two Collaborating Disciplines to Deal with the Enhanced Cardiovascular Risk in Autoimmune Rheumatic Diseases
Current Vascular Pharmacology Co-Enzyme Q10 to Treat Neurological Disorders: Basic Mechanisms, Clinical Outcomes, and Future Research Direction
CNS & Neurological Disorders - Drug Targets Atherogenesis in Renal Patients: A Model of Vascular Disease?
Current Vascular Pharmacology Impact of Pulmonary Vascular Resistances in Heart Transplantation for Congenital Heart Disease
Current Cardiology Reviews Editorial (Thematic Issue: Measuring Myocyte Oxidative Stress and Targeting Cytokines to Evaluate Inflammatory Response and Cardiac Repair after Myocardial Infarction)
Current Vascular Pharmacology Advances in Heart Failure with Preserved Ejection Fraction Management - The Role of Sacubitril-Valsartan, Pirfenidone, Spironolactone and Empagliflozin: Is Success a Series of Small Victories?
Current Pharmaceutical Design Advanced Glycation End Products in Chinese Medicine Mediated Aging Diseases: A Review
Current Vascular Pharmacology The Potential of Natural Products in the Management of Cardiovascular Disease
Current Pharmaceutical Design Pesticides-induced Cardiovascular Dysfunctions: Prevalence and Associated Mechanisms
Current Hypertension Reviews Protecting the Heart: Biological Targets and Clinical Strategies
Current Pharmaceutical Design LGE-MRI in the Assessment of Left-ventricular Remodelling in Myocarditis
Current Medical Imaging Meloxicam Prevents Load-Induced Cardiac Hypertrophy in Mice
Immunology, Endocrine & Metabolic Agents in Medicinal Chemistry (Discontinued) SynB3 Conjugated QBP1 Passes Blood-Brain Barrier Models and Inhibits PolyQ Protein Aggregation
Protein & Peptide Letters Potential Therapeutic Benefits of Sodium-Glucose Cotransporter 2 Inhibitors in the Context of Ischemic Heart Failure: A State-of-the-Art Review
Cardiovascular & Hematological Agents in Medicinal Chemistry The Role of Circadian Rhythms in Fatal Arrhythmias and the Potential Impact of Intervention for Sleep-Disordered Breathing
Current Pharmaceutical Design Stem Cells and Cardiac Disease: Where are We Going?
Current Stem Cell Research & Therapy Real-time Detection of Aortic Valve in Echocardiography using Convolutional Neural Networks
Current Medical Imaging PI3K Pathway Inhibitors: Better Not Left Alone
Current Pharmaceutical Design