Abstract
The trivalent gallium cation is capable of inhibiting tumor growth, mainly because of its resemblance to ferric iron. It affects cellular acquisition of iron by binding to transferrin, and it interacts with the iron-dependent enzyme ribonucleotide reductase, resulting in reduced dNTP pools and inhibition of DNA synthesis. The abundance of transferrin receptors and the up-regulation of ribonucleotide reductase render tumor cells susceptible to the cytotoxicity of gallium. Remarkable clinical activity in lymphomas and bladder cancer has been documented in clinical studies employing intravenous gallium nitrate, which is currently being re-evaluated in non-Hodgkins lymphoma. An improved therapeutic index is expected to result from prolonged exposure to low steady-state plasma gallium levels. Attempts to accomplish this by oral administration of gallium chloride failed because of insufficient intestinal absorption. Complexation of gallium with ligands, which stabilize gallium against hydrolysis and facilitate membrane permeation, has been recognized as a promising strategy for overcoming these limitations. Two such gallium complexes, namely tris(3-hydroxy-2-methyl- 4H-pyran-4-onato)gallium(III) (gallium maltolate) and tris(8-quinolinolato)gallium(III) (KP46), which both exhibit high bioavailability when administered via the oral route, are currently being evaluated in the clinical setting.
Keywords: gallium nitrate, gallium chloride, gallium maltolate, kp, iron(III), transferrin binding, ribonucleotide reductase, oral bioavailability
Current Topics in Medicinal Chemistry
Title: Gallium in Cancer Treatment
Volume: 4 Issue: 15
Author(s): Michael A. Jakupec and Bernhard K. Keppler
Affiliation:
Keywords: gallium nitrate, gallium chloride, gallium maltolate, kp, iron(III), transferrin binding, ribonucleotide reductase, oral bioavailability
Abstract: The trivalent gallium cation is capable of inhibiting tumor growth, mainly because of its resemblance to ferric iron. It affects cellular acquisition of iron by binding to transferrin, and it interacts with the iron-dependent enzyme ribonucleotide reductase, resulting in reduced dNTP pools and inhibition of DNA synthesis. The abundance of transferrin receptors and the up-regulation of ribonucleotide reductase render tumor cells susceptible to the cytotoxicity of gallium. Remarkable clinical activity in lymphomas and bladder cancer has been documented in clinical studies employing intravenous gallium nitrate, which is currently being re-evaluated in non-Hodgkins lymphoma. An improved therapeutic index is expected to result from prolonged exposure to low steady-state plasma gallium levels. Attempts to accomplish this by oral administration of gallium chloride failed because of insufficient intestinal absorption. Complexation of gallium with ligands, which stabilize gallium against hydrolysis and facilitate membrane permeation, has been recognized as a promising strategy for overcoming these limitations. Two such gallium complexes, namely tris(3-hydroxy-2-methyl- 4H-pyran-4-onato)gallium(III) (gallium maltolate) and tris(8-quinolinolato)gallium(III) (KP46), which both exhibit high bioavailability when administered via the oral route, are currently being evaluated in the clinical setting.
Export Options
About this article
Cite this article as:
Michael A. Jakupec and Bernhard K. Keppler , Gallium in Cancer Treatment, Current Topics in Medicinal Chemistry 2004; 4 (15) . https://dx.doi.org/10.2174/1568026043387449
DOI https://dx.doi.org/10.2174/1568026043387449 |
Print ISSN 1568-0266 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4294 |
Call for Papers in Thematic Issues
Adaptogens—History and Future Perspectives
Adaptogens are pharmacologically active compounds or plant extracts that are associated with the ability to enhance the body’s stability against stress. The intake of adaptogens is associated not only with a better ability to adapt to stress and maintain or normalise metabolic functions but also with better mental and physical ...read more
AlphaFold in Medicinal Chemistry: Opportunities and Challenges
AlphaFold, a groundbreaking AI tool for protein structure prediction, is revolutionizing drug discovery. Its near-atomic accuracy unlocks new avenues for designing targeted drugs and performing efficient virtual screening. However, AlphaFold's static predictions lack the dynamic nature of proteins, crucial for understanding drug action. This is especially true for multi-domain proteins, ...read more
Artificial intelligence for Natural Products Discovery and Development
Our approach involves using computational methods to predict the potential therapeutic benefits of natural products by considering factors such as drug structure, targets, and interactions. We also employ multitarget analysis to understand the role of drug targets in disease pathways. We advocate for the use of artificial intelligence in predicting ...read more
Chronic Kidney Disease
The scope of the special thematic issue includes but not limited to the mechanism of chronic kidney disease (CKD), the treatment of renal fibrosis and early diagnosis of CKD and so on. We also welcome manuscripts from other scientific research area with respect to internal medicine. Cell death has been ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Selective VEGFR Inhibitors for Anticancer Therapeutics in Clinical Use and Clinical Trials
Current Pharmaceutical Design Progress in Imaging Agents of Cell Apoptosis
Anti-Cancer Agents in Medicinal Chemistry Law-Medicine Interfacing: Patenting of Human Genes and Mutations
Recent Patents on DNA & Gene Sequences Positron Emission Tomography and Computer Tomography (PET/CT) in Prostate, Bladder, and Testicular Cancers
Current Medicinal Chemistry Synergistic Approaches to Clinical Oncology Biomarker Discovery
Current Topics in Medicinal Chemistry A Brief Survey of Machine Learning Application in Cancerlectin Identification
Current Gene Therapy The Endothelin Axis as Therapeutic Target in Human Malignancies: Present and Future
Current Pharmaceutical Design Proteomics in Computer-Aided Drug Design
Current Computer-Aided Drug Design PET and SPECT Imaging of Tumor Biology: New Approaches Towards Oncology Drug Discovery and Development
Current Computer-Aided Drug Design Capsaicin and Its Analogues: Structure-Activity Relationship Study
Current Medicinal Chemistry Reducing the Burden of Cervical Cancer in the Developing World
Current Women`s Health Reviews Irradiation Toxicity and Inflammatory Bowel Diseases (IBD): Review
Reviews on Recent Clinical Trials MicroRNAs: A Novel Non-Invasive Biomarker for Patients with Urological Malignancies
Current Pharmaceutical Biotechnology Cell Cycle and Cancer: The G1 Restriction Point and the G1 / S Transition
Current Genomics Tumor-Targeting Peptides: Ligands for Molecular Imaging and Therapy
Anti-Cancer Agents in Medicinal Chemistry Is there U-turn from Insulin Back to Pills in Diabetes?
Current Vascular Pharmacology Strategies and Techniques for Multi-Component Drug Design from Medicinal Herbs and Traditional Chinese Medicine
Current Topics in Medicinal Chemistry Control of Neuropathic Pain by Immune Cells and Opioids
CNS & Neurological Disorders - Drug Targets New Pharmacologic Horizons in the Treatment of Benign Prostatic Hyperplasia
Current Drug Therapy Protein Lysine Methyltransferases Inhibitors
Current Medicinal Chemistry