Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Towards Improved Therapeutic CORMs: Understanding the Reactivity of CORM-3 with Proteins

Author(s): T. Santos-Silva, A. Mukhopadhyay, J. D. Seixas, G. J.L. Bernardes, C. C. Romao and M. J. Romao

Volume 18, Issue 22, 2011

Page: [3361 - 3366] Pages: 6

DOI: 10.2174/092986711796504583

Price: $65

Abstract

The biological role of carbon monoxide (CO) has completely changed in the last decade. Beyond its widely feared toxicity, CO has revealed a very important biological activity as a signaling molecule with marked protective actions namely against inflammation, apoptosis and endothelial oxidative damage. Its direct use as a therapeutic gas showed significant and consistent positive results but also intrinsic severe limitations. The possibility of replacing the gas by pro-drugs acting as CO-Releasing Molecules (CO-RMs) has clearly been demonstrated with several experimental compounds. Transition metal carbonyls complexes have proven to be the most versatile experimental CO-RMs so far. Presently, the challenge is to equip them with drug-like properties to turn them into useful pharmaceuticals. This requires studying their interactions with biological molecules namely those that control their pharmacokinetic and ADME profiles like the plasma proteins. In this account we analyze these questions and review the existing interactions between Metal Carbonyls and proteins. The recently explored case of CORM-3 is revisited to exemplify the methodologies involved and the importance of the results for the understanding of the mode of action of such pro-drugs.

Keywords: CO therapy, CO-RM, CORM-3, Hen Egg White Lysozyme, protein-metal adduct, metal carbonyl complex, X-ray crystallography, carbon monoxide (CO), endothelial oxidative damage, demonstrated


Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy