Abstract
Forkhead O transcription factors (FOXO) are critical for the regulation of cell cycle arrest, cell death, and DNA damage repair. Inactivation of FOXO proteins may be associated with tumorigenesis, including breast cancer, prostate cancer, glioblastoma, rhabdomyosarcoma, and leukemia. Accumulated evidence shows that activation of oncogenic pathways such as phosphoinositide-3-kinase/AKT/IKK or RAS/mitogen-activated protein kinase suppresses FOXO transcriptional activity through the phosphorylation of FOXOs at different sites that ultimately leads to nuclear exclusion and degradation of FOXOs. In addition, posttranslational modifications of FOXOs such as acetylation, methylation and ubiquitination also contribute to modulating FOXO3a functions. Several anti-cancer drugs like paclitaxel, imatinib, and doxorubicin activate FOXO3a by counteracting those oncogenic pathways which restrain FOXOs functions. In this review, we will illustrate the regulation of FOXOs and reveal potential therapeutics that target FOXOs for cancer treatment.
Keywords: Forkhead transcriptional factor, breast cancer, cancer therapy, glioblastoma, rhabdomyosarcoma, leukemia, FoxO3, AZD6244, NSCLC
Current Drug Targets
Title: Deciphering the Role of Forkhead Transcription Factors in Cancer Therapy
Volume: 12 Issue: 9
Author(s): Jer-Yen Yang and Mien-Chie Hung
Affiliation:
Keywords: Forkhead transcriptional factor, breast cancer, cancer therapy, glioblastoma, rhabdomyosarcoma, leukemia, FoxO3, AZD6244, NSCLC
Abstract: Forkhead O transcription factors (FOXO) are critical for the regulation of cell cycle arrest, cell death, and DNA damage repair. Inactivation of FOXO proteins may be associated with tumorigenesis, including breast cancer, prostate cancer, glioblastoma, rhabdomyosarcoma, and leukemia. Accumulated evidence shows that activation of oncogenic pathways such as phosphoinositide-3-kinase/AKT/IKK or RAS/mitogen-activated protein kinase suppresses FOXO transcriptional activity through the phosphorylation of FOXOs at different sites that ultimately leads to nuclear exclusion and degradation of FOXOs. In addition, posttranslational modifications of FOXOs such as acetylation, methylation and ubiquitination also contribute to modulating FOXO3a functions. Several anti-cancer drugs like paclitaxel, imatinib, and doxorubicin activate FOXO3a by counteracting those oncogenic pathways which restrain FOXOs functions. In this review, we will illustrate the regulation of FOXOs and reveal potential therapeutics that target FOXOs for cancer treatment.
Export Options
About this article
Cite this article as:
Yang Jer-Yen and Hung Mien-Chie, Deciphering the Role of Forkhead Transcription Factors in Cancer Therapy, Current Drug Targets 2011; 12 (9) . https://dx.doi.org/10.2174/138945011796150299
DOI https://dx.doi.org/10.2174/138945011796150299 |
Print ISSN 1389-4501 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-5592 |
Call for Papers in Thematic Issues
Drug-Targeted Approach with Polymer Nanocomposites for Improved Therapeutics
Polymer nanocomposites have been recognized as an advanced and cutting-edge technique in drug targeting administration. These materials combine the unique features of nanoparticles with the adaptability of polymers to produce highly personalized drug administration devices. Integrating nanoparticles containing pharmaceuticals into a polymer matrix enables researchers to regulate the rates at ...read more
New drug therapy for eye diseases
Eyesight is one of the most critical senses, accounting for over 80% of our perceptions. Our quality of life might be significantly affected by eye disease, including glaucoma, diabetic retinopathy, dry eye, etc. Although the development of microinvasive ocular surgery reduces surgical complications and improves overall outcomes, medication therapy is ...read more
Therapeutic Chemical and RNA Design with Artificial Intelligence
Computer-Aided Drug Design (CADD) has emerged as a fundamental component of modern drug discovery. Molecular docking facilitates virtual screening on a large scale through structural simulations. However, traditional CADD approaches face significant limitations, as they can only screen known compounds from existing libraries. PubChem, as the most widely used chemical ...read more

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
The Role of Mammalian Target of Rapamycin (mTOR) Inhibitors in the Treatment of Solid Tumors
Current Cancer Therapy Reviews Tropism-Modified Adenoviral and Adeno-Associated Viral Vectors for Gene Therapy
Current Gene Therapy Anti-Angiogenic Therapies for Children with Cancer
Current Cancer Drug Targets CXCL12-CXCR4 Axis in Angiogenesis, Metastasis and Stem Cell Mobilization
Current Pharmaceutical Design Zebrafish: A Complete Animal Model for In Vivo Drug Discovery and Development
Current Drug Metabolism Adiponectin: Merely a Bystander or the Missing Link to Cardiovascular Disease?
Current Topics in Medicinal Chemistry Idronoxil as an Anticancer Agent: Activity and Mechanisms
Current Cancer Drug Targets Metallothioneins and Cancer
Current Protein & Peptide Science Selection of a GPER1 Ligand via Ligand-based Virtual Screening Coupled to Molecular Dynamics Simulations and Its Anti-proliferative Effects on Breast Cancer Cells
Anti-Cancer Agents in Medicinal Chemistry Insights into a Critical Role of the FOXO3a-FOXM1 Axis in DNA Damage Response and Genotoxic Drug Resistance
Current Drug Targets Targeted Regulation of PI3K/Akt/mTOR/NF-κB Signaling by Indole Compounds and their Derivatives: Mechanistic Details and Biological Implications for Cancer Therapy
Anti-Cancer Agents in Medicinal Chemistry From the Sea to Anticancer Therapy
Current Medicinal Chemistry NBS1 Heterozygosity and Cancer Risk
Current Genomics Is Fibroblast Growth Factor Receptor 4 a Suitable Target of Cancer Therapy?
Current Pharmaceutical Design In Vivo Bio-imaging Using Chlorotoxin-based Conjugates
Current Pharmaceutical Design PF-04449913 Inhibits Proliferation and Metastasis of Colorectal Cancer Cells by Down-regulating MMP9 Expression through the ERK/p65 Pathway
Current Molecular Pharmacology Novel Agents in the Management of Lung Cancer
Current Medicinal Chemistry Structural Heterogeneity and Multifunctionality of Lactoferrin
Current Protein & Peptide Science Interaction of ABC Multidrug Transporters with Anticancer Protein Kinase Inhibitors: Substrates and/or Inhibitors?
Current Cancer Drug Targets (Iso)Flav(an)ones, Chalcones, Catechins, and Theaflavins as Anticarcinogens: Mechanisms, Anti-Multidrug Resistance and QSAR Studies
Current Medicinal Chemistry