Abstract
The majority of melanoma cells do not express argininosuccinate synthetase (ASS), and hence cannot synthesize arginine from citrulline. Their growth and proliferation depend on exogenous supply of arginine. Arginine degradation using arginine deiminase (ADI) leads to growth inhibition and eventually cell death while normal cells which express ASS can survive. This notion has been translated into clinical trial. Pegylated ADI (ADI-PEG20) has shown antitumor activity in melanoma. However, the sensitivity to ADI is different among ASS(-) melanoma cells. We have investigated and reviewed the signaling pathways which are affected by arginine deprivation and their consequences which lead to cell death. We have found that arginine deprivation inhibits mTOR signaling but leads to activation of MEK and ERK with no changes in BRAF. These changes most likely lead to autophagy, a possible mechanism to survive by recycling intracellular arginine. However apoptosis does occur which can be both caspase-dependent or independent. In order to increase the therapeutic efficacy of this form of treatment, one should consider adding other agent(s) which can drive the cells toward apoptosis or inhibit the autophagic process.
Keywords: Arginine deiminase, argininosuccinate synthetase, melanoma
Current Molecular Medicine
Title: Arginine Deprivation, Autophagy, Apoptosis (AAA) for the Treatment of Melanoma
Volume: 10 Issue: 4
Author(s): N. Savaraj, M. You, C. Wu, M. Wangpaichitr, M.T. Kuo and L.G. Feun
Affiliation:
Keywords: Arginine deiminase, argininosuccinate synthetase, melanoma
Abstract: The majority of melanoma cells do not express argininosuccinate synthetase (ASS), and hence cannot synthesize arginine from citrulline. Their growth and proliferation depend on exogenous supply of arginine. Arginine degradation using arginine deiminase (ADI) leads to growth inhibition and eventually cell death while normal cells which express ASS can survive. This notion has been translated into clinical trial. Pegylated ADI (ADI-PEG20) has shown antitumor activity in melanoma. However, the sensitivity to ADI is different among ASS(-) melanoma cells. We have investigated and reviewed the signaling pathways which are affected by arginine deprivation and their consequences which lead to cell death. We have found that arginine deprivation inhibits mTOR signaling but leads to activation of MEK and ERK with no changes in BRAF. These changes most likely lead to autophagy, a possible mechanism to survive by recycling intracellular arginine. However apoptosis does occur which can be both caspase-dependent or independent. In order to increase the therapeutic efficacy of this form of treatment, one should consider adding other agent(s) which can drive the cells toward apoptosis or inhibit the autophagic process.
Export Options
About this article
Cite this article as:
Savaraj N., You M., Wu C., Wangpaichitr M., Kuo M.T. and Feun L.G., Arginine Deprivation, Autophagy, Apoptosis (AAA) for the Treatment of Melanoma, Current Molecular Medicine 2010; 10 (4) . https://dx.doi.org/10.2174/156652410791316995
DOI https://dx.doi.org/10.2174/156652410791316995 |
Print ISSN 1566-5240 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5666 |
Call for Papers in Thematic Issues
Molecular and Cellular Mechanisms in Vertigo / Vestibular Disorders
Vertigo and vestibular diseases are common among middle-aged and older adults, significantly increasing the risk of falls and leading to injuries and disabilities. Despite their prevalence, therapeutic advancements are hindered by a limited understanding of the underlying molecular and cellular mechanisms. This Special Issue is dedicated to bridging this gap ...read more
Related Journals

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
Amplified Crosstalk Between Estrogen Binding and GFR Signaling Mediated Pathways of ER Activation Drives Responses in Tumors Treated with Endocrine Disruptors
Recent Patents on Anti-Cancer Drug Discovery Current Status of Leukemia Cytotherapy - Exploitation with Immune Cells
Current Stem Cell Research & Therapy Oxidative Stress and Antioxidants in Carcinogenesis and Integrative Therapy of Cancer
Current Pharmaceutical Design Different Approaches for Obtaining Antibodies from Human B Cells
Current Drug Discovery Technologies Non-Coding RNA in Brain Development and Disorder
Current Medicinal Chemistry Combined Transarterial Chemoembolization with Microwave Ablation <i>versus</i> Microwave Alone for Treatment of Medium Sized Hepatocellular Carcinoma
Current Cancer Drug Targets Naphthoquinone Derivatives Targeting Melanoma
Current Topics in Medicinal Chemistry Cartilage Oligomeric Matrix Protein: Matricellular and Matricrine Signaling in Cardiovascular Homeostasis and Disease
Current Vascular Pharmacology Epithelial-Mesenchymal Transition: Implications in Cancer Progression and Metastasis
Current Pharmaceutical Biotechnology Animal Models for Growth Hormone Gene Therapy
Current Gene Therapy α-Lipoic Acid Supplementation: A Tool for Obesity Therapy?
Current Pharmaceutical Design Anti-Tumor Activity of Non-Nucleosidic Reverse Transcriptase Inhibitors
Current Pharmaceutical Design In Vitro and In Silico Studies of Two 1,4-Naphthoquinones and Their Topical Formulation in Bigels
Current Drug Delivery Oligonucleotides and G-quadruplex Stabilizers: Targeting Telomeres and Telomerase in Cancer Therapy
Current Pharmaceutical Design Heterocyclic Chalcone Analogues as Potential Anticancer Agents
Anti-Cancer Agents in Medicinal Chemistry Graphical Abstracts:
Current Nanoscience Intracellular Drug Delivery: Mechanisms for Cell Entry
Current Pharmaceutical Design Functional Characterization of a PEI-CyD-FA-Coated Adenovirus as Delivery Vector for Gene Therapy
Current Medicinal Chemistry Novel Targeting of Apoptosis Pathways for Prostate Cancer Therapy
Current Cancer Drug Targets Leukocyte P2 Receptors: A Novel Target for Anti-inflammatory and Antitumor Therapy
Current Drug Targets - Cardiovascular & Hematological Disorders