Abstract
The last few years have seen the transfer of two decades of research into Chimeric Antigen Receptors (CARs) into clinical trials. Despite this extensive research, there is still a great deal of debate into the optimal design strategy for these, primarily, anti-cancer entities. The archetypal CAR consists of a single-chain antibody fragment, specific to a tumour- associated antigen, fused to a component of the T-cell receptor complex (typically CD3ζ) which on antigen binding primes the engrafted T-cell for anti-tumour activity. The modular nature of these artificial receptors has enabled researchers to modify aspects of their structure, including the extracellular spacer, transmembrane and cytoplasmic domain, to achieve laboratory defined optimal activity. Despite this there is no consensus on the optimal structure, a problem exacerbated by conflicting results using identical receptors. In this review, we provide a structural overview of CAR development and highlight areas that require further refinement. We also attempt to identify possible reasons for conflicting results in the hope that this information will inspire future rational design strategies for optimal tumour targeting using CARs.
Keywords: CD3ζ, T-cell Receptor, immunotherapy, gene-transfer, T-cell, costimulation, cancer, scFv
Current Gene Therapy
Title: Building Better Chimeric Antigen Receptors for Adoptive T Cell Therapy
Volume: 10 Issue: 2
Author(s): John S. Bridgeman, Robert E. Hawkins, Andreas A. Hombach, Hinrich Abken and David E. Gilham
Affiliation:
Keywords: CD3ζ, T-cell Receptor, immunotherapy, gene-transfer, T-cell, costimulation, cancer, scFv
Abstract: The last few years have seen the transfer of two decades of research into Chimeric Antigen Receptors (CARs) into clinical trials. Despite this extensive research, there is still a great deal of debate into the optimal design strategy for these, primarily, anti-cancer entities. The archetypal CAR consists of a single-chain antibody fragment, specific to a tumour- associated antigen, fused to a component of the T-cell receptor complex (typically CD3ζ) which on antigen binding primes the engrafted T-cell for anti-tumour activity. The modular nature of these artificial receptors has enabled researchers to modify aspects of their structure, including the extracellular spacer, transmembrane and cytoplasmic domain, to achieve laboratory defined optimal activity. Despite this there is no consensus on the optimal structure, a problem exacerbated by conflicting results using identical receptors. In this review, we provide a structural overview of CAR development and highlight areas that require further refinement. We also attempt to identify possible reasons for conflicting results in the hope that this information will inspire future rational design strategies for optimal tumour targeting using CARs.
Export Options
About this article
Cite this article as:
S. Bridgeman John, E. Hawkins Robert, A. Hombach Andreas, Abken Hinrich and E. Gilham David, Building Better Chimeric Antigen Receptors for Adoptive T Cell Therapy, Current Gene Therapy 2010; 10 (2) . https://dx.doi.org/10.2174/156652310791111001
DOI https://dx.doi.org/10.2174/156652310791111001 |
Print ISSN 1566-5232 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5631 |
Call for Papers in Thematic Issues
Advances in CAR-T Cell Therapy and CRISP combination
CAR-T cell therapy is a groundbreaking immunotherapy that has transformed cancer treatment, particularly in hematological malignancies like leukemia and lymphoma. It involves engineering a patient’s own T cells to express chimeric antigen receptors (CARs) that target and destroy cancer cells. The therapy has demonstrated remarkable success, achieving durable remissions in ...read more
Melatonin Signaling in Health and Disease
Melatonin regulates a multitude of physiological functions, including circadian rhythms, acting as a scavenger of free radicals, an anti-inflammatory agent, a modulator of mitochondrial homeostasis, an antioxidant, and an enhancer of nitric oxide bioavailability. AANAT is the rate-limiting enzyme responsible for converting serotonin to NAS, which is further converted to ...read more
Programmed Cell Death Genes in Oncology: Pioneering Therapeutic and Diagnostic Frontiers.
Programmed cell death (PCD) is recognized as a pivotal biological mechanism with far-reaching effects in the realm of cancer therapy. This complex process encompasses a variety of cell death modalities, including apoptosis, autophagic cell death, pyroptosis, and ferroptosis, each of which contributes to the intricate landscape of cancer development and ...read more
The now and future of gene transfer technologies
Gene and cell therapies rely on a gene delivery system which is safe and effective. Both viral and non-viral vector systems are available with specific pros and cons. The choice of a vector system is largely dependent on the application which is a balance between target tissue/disease and safety, efficacy ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Transition Metal Based Anticancer Drugs
Current Topics in Medicinal Chemistry Kaempferol-3-<i>O</i>-Rhamnoside Inhibits the Proliferation of Jurkat Cells Through Jun Amino-Terminal Kinase Signaling
The Natural Products Journal A Comprehensive Review on Current Treatments and Challenges Involved in the Treatment of Ovarian Cancer
Current Cancer Drug Targets Current Advances in Anti-Influenza Therapy
Current Medicinal Chemistry Genetic Factors and MicroRNAs in the Development of Gallbladder Cancer: The Prospective Clinical Targets
Current Drug Targets Sesamol Induces Apoptosis by Altering Expression of Bcl-2 and Bax Proteins and Modifies Skin Tumor Development in Balb/c Mice
Anti-Cancer Agents in Medicinal Chemistry Effects of Polysaccharides from Selenium-enriched Pyracantha fortuneana on Mice Liver Injury
Medicinal Chemistry Recombinant Human p53 Adenovirus Injection (rAd-p53) Combined with Chemotherapy for 4 Cases of High-grade Serous Ovarian Cancer
Current Gene Therapy Bioinformatic Analysis Reveals Key Genes and Pathways in Aging Brain of Senescence-accelerated Mouse P8 (SAMP8)
CNS & Neurological Disorders - Drug Targets HNF1A-AS1: A Tumor-associated Long Non-coding RNA
Current Pharmaceutical Design HIF-1 Inhibitors for Cancer Therapy: From Gene Expression to Drug Discovery
Current Pharmaceutical Design Regulation of Glycolytic and Mitochondrial Metabolism by Ras
Current Pharmaceutical Biotechnology microRNAs as Anti-Cancer Therapy
Current Pharmaceutical Design Intersection of MicroRNA and Gene Regulatory Networks and their Implication in Cancer
Current Pharmaceutical Biotechnology The Cyclin-Dependent Kinase Inhibitor p21CDKN1A as a Target of Anti-Cancer Drugs
Current Cancer Drug Targets Chemoprotective Mechanism of the Natural Compounds, Epigallocatechin- 3-O-Gallate, Quercetin and Curcumin Against Cancer and Cardiovascular Diseases
Current Medicinal Chemistry MIR4435-2HG: A Tumor-associated Long Non-coding RNA
Current Pharmaceutical Design Applications of Artificial Neural Networks in Medical Science
Current Clinical Pharmacology Clinical Utility of Combined 18F-Fluoro-2-deoxyglucose Positron Emission Tomography – Computed Tomography in the Evaluation of Gastrointestinal Malignancies
Current Medical Imaging Luteolin, a Flavonoid with Potential for Cancer Prevention and Therapy
Current Cancer Drug Targets