Abstract
Barminomycin is a member of the anthracycline class of anticancer agents and was originally discovered as a pink/red complex with DNA and RNA and named SN-07. The chromophore was subsequently separated from the nucleic acids by nuclease digestion and contained the four-membered anthraquinone ring system characteristic of anthracyclines, but with an unusual eight membered ring that contained a carbinolamine which readily interconverted to an imine. The imine form is analogous to the formaldehyde-activated form of other anthracyclines such as doxorubicin. The imine form confers exceptional activity to barminomycin which is 1,000-fold more cytotoxic than doxorubicin. Barminomycin rapidly forms adducts with DNA, reacting with the exocyclic amino group of guanine residues and with high selectivity for 5-GC-3 sequences. The coupling to DNA appears to be identical to the N-C-N aminal linkage formed between doxorubicin and DNA where the carbon derives from formaldehyde for doxorubicin-DNA adducts, whereas this “activated carbon” is an inherent component of the imine group in the eight membered ring of barminomycin. Although the linkage of both drugs to DNA appears to be identical, barminomycin-DNA complexes are essentially irreversible compared to the labile doxorubicin-DNA adducts which have an in vitro (purified DNA) half-life of 25 h at 37 °C. A 3D model of the barminomycin-DNA complex has been defined from 307 NOE distance constraints. The enhanced stability of barminomycin-DNA adducts appears to be due primarily to protection of the aminal linkage from hydrolysis and this has provided insight into the design of new anthracycline derivatives with enhanced stability and activity. Strategies for harnessing the extreme reactivity and activity of barminomycin are also presented.
Keywords: Barminomycin, anthracycline, DNA adduct, GC specificity, formaldehyde activation, aminal linkage, NMR, 3D mode
Anti-Cancer Agents in Medicinal Chemistry
Title: Barminomycin, a Model for the Development of New Anthracyclines
Volume: 10 Issue: 1
Author(s): K. Kimura, D. M.S. Spencer, R. Bilardi, L. P. Swift, A. J. Box, R. T.C. Brownlee, S. M. Cutts and D. R. Phillips
Affiliation:
Keywords: Barminomycin, anthracycline, DNA adduct, GC specificity, formaldehyde activation, aminal linkage, NMR, 3D mode
Abstract: Barminomycin is a member of the anthracycline class of anticancer agents and was originally discovered as a pink/red complex with DNA and RNA and named SN-07. The chromophore was subsequently separated from the nucleic acids by nuclease digestion and contained the four-membered anthraquinone ring system characteristic of anthracyclines, but with an unusual eight membered ring that contained a carbinolamine which readily interconverted to an imine. The imine form is analogous to the formaldehyde-activated form of other anthracyclines such as doxorubicin. The imine form confers exceptional activity to barminomycin which is 1,000-fold more cytotoxic than doxorubicin. Barminomycin rapidly forms adducts with DNA, reacting with the exocyclic amino group of guanine residues and with high selectivity for 5-GC-3 sequences. The coupling to DNA appears to be identical to the N-C-N aminal linkage formed between doxorubicin and DNA where the carbon derives from formaldehyde for doxorubicin-DNA adducts, whereas this “activated carbon” is an inherent component of the imine group in the eight membered ring of barminomycin. Although the linkage of both drugs to DNA appears to be identical, barminomycin-DNA complexes are essentially irreversible compared to the labile doxorubicin-DNA adducts which have an in vitro (purified DNA) half-life of 25 h at 37 °C. A 3D model of the barminomycin-DNA complex has been defined from 307 NOE distance constraints. The enhanced stability of barminomycin-DNA adducts appears to be due primarily to protection of the aminal linkage from hydrolysis and this has provided insight into the design of new anthracycline derivatives with enhanced stability and activity. Strategies for harnessing the extreme reactivity and activity of barminomycin are also presented.
Export Options
About this article
Cite this article as:
Kimura K., Spencer M.S. D., Bilardi R., Swift P. L., Box J. A., Brownlee T.C. R., Cutts M. S. and Phillips R. D., Barminomycin, a Model for the Development of New Anthracyclines, Anti-Cancer Agents in Medicinal Chemistry 2010; 10 (1) . https://dx.doi.org/10.2174/1871520611009010070
| DOI https://dx.doi.org/10.2174/1871520611009010070 |
Print ISSN 1871-5206 |
| Publisher Name Bentham Science Publisher |
Online ISSN 1875-5992 |
Call for Papers in Thematic Issues
Advances in Nanomedicines and Targeted Therapies for Colorectal Cancer
Colorectal cancer remains a significant global health challenge, with high incidence and mortality rates despite advancements in treatment strategies. Conventional therapies often face limitations such as systemic toxicity, drug resistance, and suboptimal targeting. The advent of nanomedicines and innovative drug delivery systems offers new hope for overcoming these challenges and ...read more
Advances in Photosensitive Drugs, Herbal Medicine, and Nanotherapeutics for Targeted Cancer Therapy
This thematic issue focuses on cutting-edge research in photosensitive drugs, herbal medicine, and nanotechnology-based cancer therapies. It explores emerging trends in bibliometric analysis of photosensitizers, the role of herbal compounds in cancer networks, theranostic nanoprodrugs, phthalocyanine-based photodynamic therapy, nano-platforms for cancer treatment, and the design, synthesis, and PK-PD evaluation of ...read more
Designing Novel Molecules for Anti-Cancer Enzyme Modulation: A Mechanistic and Therapeutic Perspective
The deficiencies or hyper functions of enzymes cause a number of diseases. Enzyme inhibition is an important area of pharmaceutical research since studies in this field have already led to the discovery of wide variety of drugs useful in a number of diseases. Specific inhibitors interact with enzymes and block ...read more
Discovery Of Lead Compounds Targeting Transcriptional Regulation
Transcriptional regulation plays key physiological functions in body growth and development. Transcriptional dysregulation is one of the important biomarkers of tumor genesis and progression, which is involved in regulating tumor cell processes such as cell proliferation, differentiation, and apoptosis. Additionally, it plays a pivotal role in angiogenesis and promotes tumor ...read more
- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
DLEU2: A Meaningful Long Noncoding RNA in Oncogenesis
Current Pharmaceutical Design Immunomodulatory Drugs (IMiDs) in Multiple Myeloma
Current Cancer Drug Targets Role of Flavonoids in Future Anticancer Therapy by Eliminating the Cancer Stem Cells
Current Stem Cell Research & Therapy Molecular Biomarkers for Lung Adenocarcinoma: A Short Review
Current Cancer Therapy Reviews Design, Synthesis and Biochemical Evaluation of Estrogen Receptor Ligand Conjugates as Tumour Targeting Agents
Letters in Drug Design & Discovery Novel Immunotherapies for Hematological Malignancies
Current Molecular Pharmacology Local Drug Delivery Based Treatment Approaches for Effective Management of Periodontitis
Current Drug Therapy Culture Supernatants from Lactobacillus plantarum Induce Necrosis on a Human Promyelocytic Leukemia Cell Line
Endocrine, Metabolic & Immune Disorders - Drug Targets Cellomics as Integrative Omics for Cancer
Current Proteomics The Association Between the Level of Leukemic Stem Cells and Treatment Response Among Chronic Myeloid Leukemia Patients Treated with Imatinib Mesylate
Clinical Cancer Drugs Benzimidazole Heterocycle as a Privileged Scaffold in Antiviral Agents
Mini-Reviews in Organic Chemistry Differential Role of Apoptosis and Autophagy Associated with Anticancer Effect of Lupulone (Hop β-Acid) Derivatives on Prostate Cancer Cells
Anti-Cancer Agents in Medicinal Chemistry The Role of Peptidyl Prolyl Isomerases in Aging and Vascular Diseases
Current Molecular Pharmacology Breath Analysis Using SIFT-MS to Assess Metabolic Status in Patients After Gastro-oesophageal Cancer Surgery- a Pilot Study
Current Analytical Chemistry Recent Advance in the Research of Flavonoids as Anticancer Agents
Mini-Reviews in Medicinal Chemistry Targeting the Phosphatidylinositol 3-Kinase/Akt/Mammalian Target of Rapamycin Signaling Network in Cancer Stem Cells
Current Medicinal Chemistry Signaling Pathways Modulating Dependence of Lung Cancer on Mutant Epidermal Growth Factor Receptor and Mechanisms of Intrinsic and Acquired Resistance to Tyrosine Kinase Inhibitors
Current Pharmaceutical Design Cyclin-Dependent Kinase-2 as a Target for Cancer Therapy: Progress in the Development of CDK2 Inhibitors as Anti-Cancer Agents
Current Medicinal Chemistry Tetraspanins - Gateways for Infection
Infectious Disorders - Drug Targets Emerging Therapies in Chronic Myeloid Leukemia
Current Cancer Drug Targets





