Abstract
Neem gum, a biocompatible and biodegradable polysaccharide, has broad applications in drug delivery and tissue engineering. Its hydrophilic and bioadhesive properties make it ideal for controlled drug release and scaffold fabrication. This review examines the role of neem and its derivatives in pharmaceutical formulations, wound healing, and regenerative medicine, while addressing stability, scalability, and regulatory considerations. Future directions include the integration of nanotechnology and chemical modifications for enhanced biomedical applications. Neem gum has been developed into various forms, including hydrogels, nanoparticles, films, and coatings, for targeted drug delivery and tissue regeneration. Its antimicrobial, antioxidant, and anti-inflammatory properties enhance wound healing and infection control, but challenges like batch variability and mechanical limitations remain. Neem gum is a promising natural biomaterial for pharmaceutical and biomedical applications. Further research on stability, large-scale processing, and clinical validation is essential for commercialisation and clinical use.
Keywords: Neem gum, polysaccharide, drug delivery, bioadhesive, tissue engineering, biopolymer.






