[1]
Uppathi, P.; Rajakumari, S.; Saritha, K.V. Molecular docking: An emerging tool for target-based cancer therapy. Crit. Rev. Oncog., 2025, 30(1), 1-13.
[http://dx.doi.org/10.1615/CritRevOncog.2024056533] [PMID: 39819431]
[http://dx.doi.org/10.1615/CritRevOncog.2024056533] [PMID: 39819431]
[2]
Paggi, J.M.; Pandit, A.; Dror, R.O. The art and science of molecular docking. Annu. Rev. Biochem., 2024, 93(1), 389-410.
[http://dx.doi.org/10.1146/annurev-biochem-030222-120000] [PMID: 38594926]
[http://dx.doi.org/10.1146/annurev-biochem-030222-120000] [PMID: 38594926]
[3]
Vicidomini, C.; Fontanella, F.; D’Alessandro, T.; Roviello, G.N. A survey on computational methods in drug discovery for neurodegenerative diseases. Biomolecules, 2024, 14(10), 1330.
[http://dx.doi.org/10.3390/biom14101330] [PMID: 39456263]
[http://dx.doi.org/10.3390/biom14101330] [PMID: 39456263]
[4]
Shahin, R.; Jaafreh, S.; Azzam, Y. Tracking protein kinase targeting advances: Integrating QSAR into machine learning for kinase-targeted drug discovery. Future Sci. OA, 2025, 11(1), 2483631.
[http://dx.doi.org/10.1080/20565623.2025.2483631] [PMID: 40181786]
[http://dx.doi.org/10.1080/20565623.2025.2483631] [PMID: 40181786]
[5]
Bachhar, S.; Kumar, S.; Dutta, B.; Das, S. Emerging horizons of AI in pharmaceutical research. Adv. Pharmacol., 2025, 103, 325-348.
[http://dx.doi.org/10.1016/bs.apha.2025.01.016] [PMID: 40175048]
[http://dx.doi.org/10.1016/bs.apha.2025.01.016] [PMID: 40175048]
[6]
Zhang, X.; Shen, C.; Zhang, H.; Kang, Y.; Hsieh, C.Y.; Hou, T. Advancing ligand docking through deep learning: Challenges and prospects in virtual screening. Acc. Chem. Res., 2024, 57(10), 1500-1509.
[http://dx.doi.org/10.1021/acs.accounts.4c00093] [PMID: 38577892]
[http://dx.doi.org/10.1021/acs.accounts.4c00093] [PMID: 38577892]
[7]
Muller, C.; Rabal, O.; Diaz Gonzalez, C. Artificial intelligence, machine learning, and deep learning in real-life drug design cases. Methods Mol. Biol., 2022, 2390, 383-407.
[http://dx.doi.org/10.1007/978-1-0716-1787-8_16] [PMID: 34731478]
[http://dx.doi.org/10.1007/978-1-0716-1787-8_16] [PMID: 34731478]
[8]
Baek, M.; DiMaio, F.; Anishchenko, I.; Dauparas, J.; Ovchinnikov, S.; Lee, G.R.; Wang, J.; Cong, Q.; Kinch, L.N.; Schaeffer, R.D.; Millán, C.; Park, H.; Adams, C.; Glassman, C.R.; DeGiovanni, A.; Pereira, J.H.; Rodrigues, A.V.; van Dijk, A.A.; Ebrecht, A.C.; Opperman, D.J.; Sagmeister, T.; Buhlheller, C.; Pavkov-Keller, T.; Rathinaswamy, M.K.; Dalwadi, U.; Yip, C.K.; Burke, J.E.; Garcia, K.C.; Grishin, N.V.; Adams, P.D.; Read, R.J.; Baker, D. Accurate prediction of protein structures and interactions using a three-track neural network. Science, 2021, 373(6557), 871-876.
[http://dx.doi.org/10.1126/science.abj8754] [PMID: 34282049]
[http://dx.doi.org/10.1126/science.abj8754] [PMID: 34282049]
[9]
Breda, A.; Basso, L.; Santos, D.; de Azevedo, W. Virtual screening of drugs: Score functions, docking, and drug design. Curr. Computeraided Drug Des., 2008, 4(4), 265-272.
[http://dx.doi.org/10.2174/157340908786786047]
[http://dx.doi.org/10.2174/157340908786786047]
[10]
Sulimov, V.B.; Kutov, D.C.; Sulimov, A.V. Advances in docking. Curr. Med. Chem., 2020, 26(42), 7555-7580.
[http://dx.doi.org/10.2174/0929867325666180904115000] [PMID: 30182836]
[http://dx.doi.org/10.2174/0929867325666180904115000] [PMID: 30182836]
[11]
Ross, G.A.; Morris, G.M.; Biggin, P.C. One size does not fit all: The limits of structure-based models in drug discovery. J. Chem. Theory Comput., 2013, 9(9), 4266-4274.
[http://dx.doi.org/10.1021/ct4004228] [PMID: 24124403]
[http://dx.doi.org/10.1021/ct4004228] [PMID: 24124403]
[12]
Bitencourt-Ferreira, G.; Villarreal, M.A.; Quiroga, R.; Biziukova, N.; Poroikov, V.; Tarasova, O.; de Azevedo Junior, W.F. Exploring scoring function space: Developing computational models for drug discovery. Curr. Med. Chem., 2024, 31(17), 2361-2377.
[http://dx.doi.org/10.2174/0929867330666230321103731] [PMID: 36944627]
[http://dx.doi.org/10.2174/0929867330666230321103731] [PMID: 36944627]
[13]
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; Verplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.; Perrot, M.; Duchesnay, E. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res., 2011, 12, 2825-2830.
[14]
Xavier, M.M.; Heck, G.S.; Avila, M.B.; Levin, N.M.B.; Pintro, V.O.; Carvalho, N.L.; Azevedo, W.F. SAnDReS a computational tool for statistical analysis of docking results and development of scoring functions. Comb. Chem. High Throughput Screen., 2016, 19(10), 801-812.
[http://dx.doi.org/10.2174/1386207319666160927111347] [PMID: 27686428]
[http://dx.doi.org/10.2174/1386207319666160927111347] [PMID: 27686428]
[15]
de Azevedo, W.F.; Quiroga, R.; Villarreal, M.A.; da Silveira, N.J.F.; Bitencourt-Ferreira, G.; da Silva, A.D.; Veit-Acosta, M.; Oliveira, P.R.; Tutone, M.; Biziukova, N.; Poroikov, V.; Tarasova, O.; Baud, S. SAnDReS2.0: Development of machine‐learning models to explore the scoring function space. J. Comput. Chem., 2024, 45(27), 2333-2346.
[http://dx.doi.org/10.1002/jcc.27449] [PMID: 38900052]
[http://dx.doi.org/10.1002/jcc.27449] [PMID: 38900052]
[16]
da Silva, A.D.; Bitencourt-Ferreira, G.; de Azevedo, W.F. Taba: A tool to analyze the binding affinity. J. Comput. Chem., 2020, 41(1), 69-73.
[http://dx.doi.org/10.1002/jcc.26048] [PMID: 31410856]
[http://dx.doi.org/10.1002/jcc.26048] [PMID: 31410856]
[17]
Bitencourt-Ferreira, G.; de Azevedo, W.F. Exploring the scoring function space. Methods Mol. Biol., 2019, 2053, 275-281.
[http://dx.doi.org/10.1007/978-1-4939-9752-7_17] [PMID: 31452111]
[http://dx.doi.org/10.1007/978-1-4939-9752-7_17] [PMID: 31452111]
[18]
Bitencourt-Ferreira, G.; de Azevedo, W.F. Machine learning to predict binding affinity. Methods Mol. Biol., 2019, 2053, 251-273.
[http://dx.doi.org/10.1007/978-1-4939-9752-7_16] [PMID: 31452110]
[http://dx.doi.org/10.1007/978-1-4939-9752-7_16] [PMID: 31452110]
[19]
Veit-Acosta, M.; de Azevedo Junior, W.F. Computational prediction of binding affinity for CDK2-ligand complexes. A protein target for cancer drug discovery. Curr. Med. Chem., 2022, 29(14), 2438-2455.
[http://dx.doi.org/10.2174/0929867328666210806105810] [PMID: 34365938]
[http://dx.doi.org/10.2174/0929867328666210806105810] [PMID: 34365938]
[20]
Ren, F.; Ding, X.; Zheng, M.; Korzinkin, M.; Cai, X.; Zhu, W.; Mantsyzov, A.; Aliper, A.; Aladinskiy, V.; Cao, Z.; Kong, S.; Long, X.; Man Liu, B.H.; Liu, Y.; Naumov, V.; Shneyderman, A.; Ozerov, I.V.; Wang, J.; Pun, F.W.; Polykovskiy, D.A.; Sun, C.; Levitt, M.; Aspuru-Guzik, A.; Zhavoronkov, A. AlphaFold accelerates artificial intelligence powered drug discovery: Efficient discovery of a novel CDK20 small molecule inhibitor. Chem. Sci., 2023, 14(6), 1443-1452.
[http://dx.doi.org/10.1039/D2SC05709C] [PMID: 36794205]
[http://dx.doi.org/10.1039/D2SC05709C] [PMID: 36794205]
[21]
Cavasotto, C.N.; Di Filippo, J.I.; Scardino, V. Lessons learnt from machine learning in early stages of drug discovery. Expert Opin. Drug Discov., 2024, 19(6), 631-633.
[http://dx.doi.org/10.1080/17460441.2024.2354279] [PMID: 38727031]
[http://dx.doi.org/10.1080/17460441.2024.2354279] [PMID: 38727031]
[22]
Guo, S.B.; Meng, Y.; Lin, L.; Zhou, Z.Z.; Li, H.L.; Tian, X.P.; Huang, W.J. Artificial intelligence alphafold model for molecular biology and drug discovery: A machine-learning-driven informatics investigation. Mol. Cancer, 2024, 23(1), 223.
[http://dx.doi.org/10.1186/s12943-024-02140-6] [PMID: 39369244]
[http://dx.doi.org/10.1186/s12943-024-02140-6] [PMID: 39369244]
[23]
Hou, J.; Jun, S.R.; Zhang, C.; Kim, S.H. Global mapping of the protein structure space and application in structure-based inference of protein function. Proc. Natl. Acad. Sci. USA, 2005, 102(10), 3651-3656.
[http://dx.doi.org/10.1073/pnas.0409772102] [PMID: 15705717]
[http://dx.doi.org/10.1073/pnas.0409772102] [PMID: 15705717]
[24]
Filgueira de Azevedo, W. Machine learning meets physics-based modeling: A mass-spring system to predict protein-ligand binding affinity. Curr. Med. Chem., 2025, 32(28), 5882-5897.
[http://dx.doi.org/10.2174/0109298673307315240730042209] [PMID: 39092736]
[http://dx.doi.org/10.2174/0109298673307315240730042209] [PMID: 39092736]
[25]
Santos, L.M.; Araújo, L.P.; Falleiros, L.; Mariano, C.P.; Junior, W.F.A.; Silveira, N.J.F. Medicinal chemistry behind capivasertib discovery: Seventh magic bullet of the fragment-based drug design approved for oncology. Curr. Med. Chem., 2025, 32(28), 5898-5923.
[http://dx.doi.org/10.2174/0109298673331253241004110953] [PMID: 40148304]
[http://dx.doi.org/10.2174/0109298673331253241004110953] [PMID: 40148304]
[26]
Aguiar, C.; Camps, I. Molecular docking in drug discovery: Techniques, applications, and advancements. Curr. Med. Chem., 2025, 32(28), 5924-5938.
[http://dx.doi.org/10.2174/0109298673325827240926081845] [PMID: 39415575]
[http://dx.doi.org/10.2174/0109298673325827240926081845] [PMID: 39415575]
[27]
de Angelo, R.M.; Nascimento, L.A.; Encide, J.P.P.; Barbosa, H.; Ghilardi Lago, J.H.; da Silva Emery, F.; Honorio, K.M. Advances and Challenges in molecular docking applied to neglected tropical diseases. Curr. Med. Chem., 2025, 32(28), 5939-5959.
[http://dx.doi.org/10.2174/0109298673327352240930040103] [PMID: 39773039]
[http://dx.doi.org/10.2174/0109298673327352240930040103] [PMID: 39773039]
[28]
Quiroga, R.; Villarreal, M. Developing generalizable scoring functions for molecular docking: challenges and perspectives. Curr. Med. Chem., 2025, 32(28), 5960-5972.
[http://dx.doi.org/10.2174/0109298673334469241017053508] [PMID: 39482913]
[http://dx.doi.org/10.2174/0109298673334469241017053508] [PMID: 39482913]
[29]
Waqas, M.; Ullah, S.; Ahsan Halim, S.; Ullah, I.; Jan, A.; Khalid, A.; Ali, A.; Khan, A.; Al-Harrasi, A.; Al-Harrasi, A. Discovery of novel natural inhibitors against SARS-CoV-2 main protease: A rational approach to antiviral therapeutics. Curr. Med. Chem., 2025, 32(28), 5973-5995.
[http://dx.doi.org/10.2174/0109298673292839240329081008] [PMID: 38591207]
[http://dx.doi.org/10.2174/0109298673292839240329081008] [PMID: 38591207]
[30]
Crampon, K.; Bourrasset, C.; Baud, S.; Steffenel, L.A. SGPocket: A new graph convolutional neural network for ligand-protein binding site prediction. Curr. Med. Chem., 2025, 32(28), 5996-6006.
[http://dx.doi.org/10.2174/0109298673289137240304165758] [PMID: 38468517]
[http://dx.doi.org/10.2174/0109298673289137240304165758] [PMID: 38468517]
Article Metrics





