Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Design, Synthesis, and Molecular Docking Studies of Indolo[3,2-c]Quinolines as Topoisomerase Inhibitors

Author(s): Mohamed Badr, Elshaymaa I. Elmongy*, Ibrahim El Tantawy El Sayed*, Yasmine S. Moemen, Ashraf Khalil, Doaa Elkhateeb, Reem Binsuwaidan and Hadeer Ali

Volume 25, Issue 14, 2025

Published on: 03 February, 2025

Page: [1029 - 1040] Pages: 12

DOI: 10.2174/0118715206360700241219065917

Price: $65

Abstract

Background: The tetracyclic indoloquinoline ring system has attracted considerable interest in the recent past due to its broad spectrum of biological activities and its binding to various types of nucleic acids.

Objective: This study aims to elucidate their interactions with DNA and their effects on topoisomerases (TOPO) I and II.

Methods: Several compounds derived from 6-amino-11H-indolo[3,2-c]quinoline with diverse groups on the quinoline ring have been successfully synthesized according to a previously established protocol where all the synthesized indolo[3,2-c]quinoline derivatives were evaluated in vitro against A549, HCT-116, BALB/3T3, and MV4-11 cell lines using MTT (3-[4,5- dimethylthiazol-2-yl]-2,5-diphenyl- tetrazolium bromide) assay. These derivatives were then screened for their topo I and II inhibitory activities.

Results: The tested compounds were more effective at killing MV4-11 leukemia cells than the standard cancer drug cisplatin, as shown by the fact that their IC50 values were less than 0.9 μM. On the other hand, cisplatin revealed an IC50 value of 2.36 μM. Moreover, they exhibited inhibitory activity against both Topoisomerase (Topo) I and II. The most potent compound, 5g, demonstrated a suppressive impact on topoisomerase I, with an IC50 value of 2.9 μM compared to the positive control Camptothecin (IC50 1.64 μM) and compound 8 displayed remarkable topoisomerase II inhibitory activity with an IC50 of 6.82 μM compared to the positive control Doxorubicin (IC50 6.49 μM). The cell cycle study for compounds 5g and 8 revealed that cell cycle arrest occurred at the G1/S and S phases, respectively. Compounds 5g and 8 showed a high selectivity index, which suggests that they could be used to develop low-toxicity chemotherapeutic agents.

Conclusion: The results of this study demonstrate that compounds 5g and 8 can be considered promising candidates for further anti-cancer drug development, which might be related to inhibiting TOPO I and TOPO II activities.

Keywords: Indoloquinoline, anticancer agents, apoptosis, molecular docking, topoisomerase inhibitors, MV4-11 leukemia cells.

Graphical Abstract
[1]
Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2024, 74(3), 229-263.
[http://dx.doi.org/10.3322/caac.21834] [PMID: 38572751]
[2]
Soerjomataram, I.; Bray, F. Planning for tomorrow: Global cancer incidence and the role of prevention 2020–2070. Nat. Rev. Clin. Oncol., 2021, 18(10), 663-672.
[http://dx.doi.org/10.1038/s41571-021-00514-z] [PMID: 34079102]
[3]
El Sayed, I.E. et al. Synthesis, Nanoformulations and In-vitro anticancer activity of N-substituted side chain neocryptolepine scaffolds. Molecules,, 2022, 27(3)
[4]
Selvam, T.P.; Karthick, V.; Kumar, P.V.; Ali, M.A. Synthesis and structure-activity relationship study of 2-(substituted benzylidene)-7-(4-fluorophenyl)-5-(furan-2-yl)-2H-thiazolo[3,2-a]pyrimidin-3(7H)-one derivatives as anticancer agents. Drug Discov. Ther., 2012, 6(4), 198-204.
[http://dx.doi.org/10.5582/ddt.2012.v6.4.198] [PMID: 23006990]
[5]
Akkachairin, B.; Tummatorn, J.; Khamsuwan, N.; Thongsornkleeb, C.; Ruchirawat, S. Domino N 2 -extrusion–cyclization of alkynylarylketone derivatives for the synthesis of indoloquinolines and carbocycle-fused quinolines. J. Org. Chem., 2018, 83(18), 11254-11268.
[http://dx.doi.org/10.1021/acs.joc.8b01851] [PMID: 30084635]
[6]
Aksenov, A.V.; Aksenov, D.A.; Orazova, N.A.; Aksenov, N.A.; Griaznov, G.D.; De Carvalho, A.; Kiss, R.; Mathieu, V.; Kornienko, A.; Rubin, M. One-pot, three-component assembly of indoloquinolines: Total synthesis of isocryptolepine. J. Org. Chem., 2017, 82(6), 3011-3018.
[http://dx.doi.org/10.1021/acs.joc.6b03084] [PMID: 28253622]
[7]
Parvatkar, P.T.; Parameswaran, P.S. Indoloquinolines: Possible biogenesis from common indole precursors and their synthesis using domino strategies. Curr. Org. Synth., 2015, 13(1), 58-72.
[http://dx.doi.org/10.2174/1570179412666150511224648]
[8]
Wright, C.W.; Addae-Kyereme, J.; Breen, A.G.; Brown, J.E.; Cox, M.F.; Croft, S.L.; Gökçek, Y.; Kendrick, H.; Phillips, R.M.; Pollet, P.L. Synthesis and evaluation of cryptolepine analogues for their potential as new antimalarial agents. J. Med. Chem., 2001, 44(19), 3187-3194.
[http://dx.doi.org/10.1021/jm010929+] [PMID: 11543688]
[9]
Onyeibor, O.; Croft, S.L.; Dodson, H.I.; Feiz-Haddad, M.; Kendrick, H.; Millington, N.J.; Parapini, S.; Phillips, R.M.; Seville, S.; Shnyder, S.D.; Taramelli, D.; Wright, C.W. Synthesis of some cryptolepine analogues, assessment of their antimalarial and cytotoxic activities, and consideration of their antimalarial mode of action. J. Med. Chem., 2005, 48(7), 2701-2709.
[http://dx.doi.org/10.1021/jm040893w] [PMID: 15801861]
[10]
Wang, N. Structural modifications of nature-inspired indoloquinolines: A mini review of their potential antiproliferative activity. Molecules, 2019, 24(11)
[http://dx.doi.org/10.3390/molecules24112121]
[11]
Ibrahim, E.S.; Montgomerie, A.M.; Sneddon, A.H.; Proctor, G.R.; Green, B. Synthesis of indolo[3,2-c]quinolines and indolo[3,2-d]benzazepines and their interaction with DNA. Eur. J. Med. Chem., 1988, 23(2), 183-188.
[http://dx.doi.org/10.1016/0223-5234(88)90192-4]
[12]
Marquez, V.E.; Cranston, J.W.; Ruddon, R.W.; Kier, L.B.; Burckhalter, J.H. Mechanism of action of amodiaquine. Synthesis of its indoloquinoline analog. J. Med. Chem., 1972, 15(1), 36-39.
[http://dx.doi.org/10.1021/jm00271a010] [PMID: 4550134]
[13]
Lu, W.J.; Świtalska, M.; Wang, L.; Yonezawa, M.; El-Sayed, I.E-T.; Wietrzyk, J.; Inokuchi, T. In vitros antiproliferative activity of 11-aminoalkylamino-substituted 5H-indolo[2,3-b]quinolines; Improving activity of neocryptolepines by installation of ester substituent. Med. Chem. Res., 2013, 22(9), 4492-4504.
[http://dx.doi.org/10.1007/s00044-012-0443-x]
[14]
Ahmed, A.A.S.; Awad, H.M.; El-Sayed, I.E.T.; El Gokha, A.A. Synthesis and antiproliferative activity of new hybrids bearing neocryptolepine, acridine and α-aminophosphonate scaffolds. J. Indian Chem. Soc., 2020, 17(5), 1211-1221.
[http://dx.doi.org/10.1007/s13738-019-01849-2]
[15]
Fan, M. Screening for natural inhibitors of human topoisomerases from medicinal plants with bio-affinity ultrafiltration and LC–MS. Phytochem. Rev., 2020, 19(5), 1231-1261.
[http://dx.doi.org/10.1007/s11101-019-09635-x]
[16]
Singh, S.; Pandey, V.P.; Yadav, K.; Yadav, A.; Dwivedi, U.N. Natural products as anti-cancerous therapeutic molecules targeted towards topoisomerases. Curr. Protein Pept. Sci., 2020, 21(11), 1103-1142.
[http://dx.doi.org/10.2174/1389203721666200918152511] [PMID: 32951576]
[17]
Nofal, A.E.; Elmongy, E.I.; Hassan, E.A.; Tousson, E.; Ahmed, A.A.S.; El Sayed, I.E.T.; Binsuwaidan, R.; Sakr, M. Impact of synthesized indoloquinoline analog to isolates from Cryptolepis sanguinolenta on tumor growth inhibition and hepatotoxicity in ehrlich solid tumor-bearing female mice. Cells, 2023, 12(7), 1024.
[http://dx.doi.org/10.3390/cells12071024] [PMID: 37048097]
[18]
Liang, X. A comprehensive review of topoisomerase inhibitors as anticancer agents in the past decade. Europ. J. Med. Chem., 2019, 171, 129-168.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.034]
[19]
Wang, J.C. Cellular roles of DNA topoisomerases: A molecular perspective. Nat. Rev. Mol. Cell Biol., 2002, 3(6), 430-440.
[http://dx.doi.org/10.1038/nrm831] [PMID: 12042765]
[20]
Badr, M.; Elmongy, E.I.; Elkhateeb, D.; Moemen, Y.S.; Khalil, A.; Ali, H.; Binsuwaidan, R.; Awadallah, F.; El Sayed, I.E.T. In silico and in vitros investigation of cytotoxicity and apoptosis of acridine/sulfonamide hybrids targeting topoisomerases I and II. Pharmaceuticals, 2024, 17(11), 1487.
[http://dx.doi.org/10.3390/ph17111487]
[21]
Khadka, D.B.; Cho, W.J. Topoisomerase inhibitors as anticancer agents: A patent update. Expert Opin. Ther. Pat., 2013, 23(8), 1033-1056.
[http://dx.doi.org/10.1517/13543776.2013.790958] [PMID: 23611704]
[22]
Wang, N.; Świtalska, M.; Wu, M.Y.; Imai, K.; Ngoc, T.A.; Pang, C.Q.; Wang, L.; Wietrzyk, J.; Inokuchi, T. Synthesis and in vitros cytotoxic effect of 6-amino-substituted 11H- and 11Me-indolo[3,2-c]quinolines. Eur. J. Med. Chem., 2014, 78, 314-323.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.038] [PMID: 24686018]
[23]
Skehan, P. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst., 1990, 82(13), 1107-1112.
[24]
Quadruplex, G.; Hu, M.; Lin, J. New dibenzoquinoxalines inhibit triple-negative breast cancer growth by dual targeting of topoisomerase 1 and the c-MYC G-quadruplex. J. Med. Chem., 2021, (10), 6720-6729.
[http://dx.doi.org/10.1021/acs.jmedchem.0c02202]
[25]
Eissa, I.H.; El-Naggar, A.M.; El-Sattar, N.E.A.A.; Youssef, A.S.A. Design and discovery of novel quinoxaline derivatives as dual DNA intercalators and topoisomerase II inhibitors. Anticancer. Agents Med. Chem., 2018, 18(2), 195-209.
[http://dx.doi.org/10.2174/1871520617666170710182405] [PMID: 28699490]
[26]
Turky, A.; Bayoumi, A.H.; Ghiaty, A.; El-Azab, A.S.; A-M Abdel-Aziz, A.; Abulkhair, H.S. Design, synthesis, and antitumor activity of novel compounds based on 1,2,4-triazolophthalazine scaffold: Apoptosis-inductive and PCAF-inhibitory effects. Bioorg. Chem., 2020, 101, 104019.
[http://dx.doi.org/10.1016/j.bioorg.2020.104019] [PMID: 32615465]
[27]
Andree, H.A.; Reutelingsperger, C.P.; Hauptmann, R.; Hemker, H.C.; Hermens, W.T.; Willems, G.M. Binding of vascular anticoagulant α (VAC α) to planar phospholipid bilayers. J. Biol. Chem., 1990, 265(9), 4923-4928.
[http://dx.doi.org/10.1016/S0021-9258(19)34062-1] [PMID: 2138622]
[28]
Shum, J.; Leung, P.K.K.; Lo, K.K.W. Luminescent Ruthenium(II) polypyridine complexes for a wide variety of biomolecular and cellular applications. Inorg. Chem., 2019, 58(4), 2231-2247.
[http://dx.doi.org/10.1021/acs.inorgchem.8b02979] [PMID: 30693762]
[29]
Segun, P.A.; Ogbole, O.O.; Ismail, F.M.D.; Nahar, L.; Evans, A.R.; Ajaiyeoba, E.O.; Sarker, S.D. Resveratrol derivatives fromCommiphora africana (A. Rich.) Endl. display cytotoxicity and selectivity against several human cancer cell lines. Phytother. Res., 2019, 33(1), 159-166.
[http://dx.doi.org/10.1002/ptr.6209] [PMID: 30346066]
[30]
Sutejo, I.R.; Putri, H.; Meiyanto, E. The selectivity of ethanolic extract of buah makassar (Brucea javanica) on metastatic breast cancer cells. J. Agromed. Med. Sci., 1970, 2(1), 1-6.
[http://dx.doi.org/10.19184/ams.v2i1.2422]
[31]
Butt, S.S.; Badshah, Y.; Shabbir, M.; Rafiq, M. Molecular docking using chimera and autodock vina software for nonbioinformaticians. JMIR Bioinform. Biotechnol., 2020, 1(1), e14232.
[http://dx.doi.org/10.2196/14232] [PMID: 38943236]
[32]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[33]
Wenzel, E.S.; Singh, A.T.K. Cell-cycle checkpoints and aneuploidy on the path to cancer. In Vivo, 2018, 32(1), 1-5.
[http://dx.doi.org/10.21873/invivo.11197] [PMID: 29275292]
[34]
Elbastawesy, M.A.I.; Aly, A.A.; Ramadan, M.; Elshaier, Y.A.M.M.; Youssif, B.G.M.; Brown, A.B.; El-Din A Abuo-Rahma, G. Novel pyrazoloquinolin-2-ones: Design, synthesis, docking studies, and biological evaluation as antiproliferative EGFR-TK inhibitors. Bioorg. Chem., 2019, 90, 103045.
[http://dx.doi.org/10.1016/j.bioorg.2019.103045] [PMID: 31212178]
[35]
Da’i, M.; Meilinasary, K.A.; Suhendi, A.; Haryanti, S. Selectivity index of alpinia galanga extract and 1′-acetoxychavicol acetate on cancer cell lines. Indones. J. Cancer Chemoprevent., 2019, 10(2), 95.
[http://dx.doi.org/10.14499/indonesianjcanchemoprev10iss2pp95-100]
[36]
Staker, B.L.; Hjerrild, K.; Feese, M.D.; Behnke, C.A.; Burgin, A.B., Jr; Stewart, L. The mechanism of topoisomerase I poisoning by a camptothecin analog. Proc. Natl. Acad. Sci. USA, 2002, 99(24), 15387-15392.
[http://dx.doi.org/10.1073/pnas.242259599] [PMID: 12426403]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy