Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

New Insights into the Modifications and Bioactivities of Indole-3- Carboxaldehyde and its Derivatives as a Potential Scaffold for Drug Design: A Mini-Review

Author(s): Nuhu Abdullahi Mukhtar, Mustapha Suleiman, Helmi Mohammed Al-Maqtari, Kumitaa Theva Das, Ajmal R. Bhat and Joazaizulfazli Jamalis*

Volume 25, Issue 6, 2025

Published on: 07 January, 2025

Page: [480 - 503] Pages: 24

DOI: 10.2174/0113895575351704241120060746

Price: $65

Abstract

Indole, a ubiquitous structural motif in bioactive compounds, has played a pivotal role in drug discovery. Among indole derivatives, indole-3-carboxaldehyde (I3A) has emerged as a particularly promising scaffold for the development of therapeutic agents. This review delves into the recent advancements in the chemical modification of I3A and its derivatives, highlighting their potential applications in various therapeutic areas. I3A derivatives have demonstrated a wide range of biological activities, including anti-inflammatory, anti-leishmanial, anti-cancer, anti-bacterial, antifungal, and anti-HIV properties. The structural modifications introduced to the I3A scaffold, such as substitutions on the indole ring (alkylation/arylation/halogenation), variations in the aldehyde group via condensation (Aldol/Claisen/Knoevenagel), and molecular hybridization with other reputable bioactive compounds like coumarins, chalcones, triazoles, and thiophenes, contribute to these activities. Beyond its therapeutic potential, I3A has also found applications as a ligand for Schiff base synthesis, a polymer, and a chromophore. This review provides a comprehensive overview of the latest research on I3A and its derivatives, focusing on the key reactions, modification pathways, reaction conditions, yields, and associated therapeutic activities. By understanding these advancements, researchers can gain valuable insights into the potential applications and future directions for I3A-based drug discovery.

Keywords: Indole-3-carboxaldehyde, indole, halogenation, bioactivity, drug design, triazoles.

« Previous
Graphical Abstract
[1]
Murray, C.J.L.; Vos, T.; Lozano, R.; Naghavi, M.; Flaxman, A.D.; Michaud, C.; Ezzati, M.; Shibuya, K.; Salomon, J.A.; Abdalla, S.; Aboyans, V.; Abraham, J.; Ackerman, I.; Aggarwal, R.; Ahn, S.Y.; Ali, M.K.; AlMazroa, M.A.; Alvarado, M.; Anderson, H.R.; Anderson, L.M.; Andrews, K.G.; Atkinson, C.; Baddour, L.M.; Bahalim, A.N.; Barker-Collo, S.; Barrero, L.H.; Bartels, D.H.; Basáñez, M-G.; Baxter, A.; Bell, M.L.; Benjamin, E.J.; Bennett, D.; Bernabé, E.; Bhalla, K.; Bhandari, B.; Bikbov, B.; Abdulhak, A.B.; Birbeck, G.; Black, J.A.; Blencowe, H.; Blore, J.D.; Blyth, F.; Bolliger, I.; Bonaventure, A.; Boufous, S.; Bourne, R.; Boussinesq, M.; Braithwaite, T.; Brayne, C.; Bridgett, L.; Brooker, S.; Brooks, P.; Brugha, T.S.; Bryan-Hancock, C.; Bucello, C.; Buchbinder, R.; Buckle, G.; Budke, C.M.; Burch, M.; Burney, P.; Burstein, R.; Calabria, B.; Campbell, B.; Canter, C.E.; Carabin, H.; Carapetis, J.; Carmona, L.; Cella, C.; Charlson, F.; Chen, H.; Cheng, A.T-A.; Chou, D.; Chugh, S.S.; Coffeng, L.E.; Colan, S.D.; Colquhoun, S.; Colson, K.E.; Condon, J.; Connor, M.D.; Cooper, L.T.; Corriere, M.; Cortinovis, M.; de Vaccaro, K.C.; Couser, W.; Cowie, B.C.; Criqui, M.H.; Cross, M.; Dabhadkar, K.C.; Dahiya, M.; Dahodwala, N.; Damsere-Derry, J.; Danaei, G.; Davis, A.; Leo, D.D.; Degenhardt, L.; Dellavalle, R.; Delossantos, A.; Denenberg, J.; Derrett, S.; Des Jarlais, D.C.; Dharmaratne, S.D.; Dherani, M.; Diaz-Torne, C.; Dolk, H.; Dorsey, E.R.; Driscoll, T.; Duber, H.; Ebel, B.; Edmond, K.; Elbaz, A.; Ali, S.E.; Erskine, H.; Erwin, P.J.; Espindola, P.; Ewoigbokhan, S.E.; Farzadfar, F.; Feigin, V.; Felson, D.T.; Ferrari, A.; Ferri, C.P.; Fèvre, E.M.; Finucane, M.M.; Flaxman, S.; Flood, L.; Foreman, K.; Forouzanfar, M.H.; Fowkes, F.G.R.; Fransen, M.; Freeman, M.K.; Gabbe, B.J.; Gabriel, S.E.; Gakidou, E.; Ganatra, H.A.; Garcia, B.; Gaspari, F.; Gillum, R.F.; Gmel, G.; Gonzalez-Medina, D.; Gosselin, R.; Grainger, R.; Grant, B.; Groeger, J.; Guillemin, F.; Gunnell, D.; Gupta, R.; Haagsma, J.; Hagan, H.; Halasa, Y.A.; Hall, W.; Haring, D.; Haro, J.M.; Harrison, J.E.; Havmoeller, R.; Hay, R.J.; Higashi, H.; Hill, C.; Hoen, B.; Hoffman, H.; Hotez, P.J.; Hoy, D.; Huang, J.J.; Ibeanusi, S.E.; Jacobsen, K.H.; James, S.L.; Jarvis, D.; Jasrasaria, R.; Jayaraman, S.; Johns, N.; Jonas, J.B.; Karthikeyan, G.; Kassebaum, N.; Kawakami, N.; Keren, A.; Khoo, J-P.; King, C.H.; Knowlton, L.M.; Kobusingye, O.; Koranteng, A.; Krishnamurthi, R.; Laden, F.; Lalloo, R.; Laslett, L.L.; Lathlean, T.; Leasher, J.L.; Lee, Y.Y.; Leigh, J.; Levinson, D.; Lim, S.S.; Limb, E.; Lin, J.K.; Lipnick, M.; Lipshultz, S.E.; Liu, W.; Loane, M.; Ohno, S.L.; Lyons, R.; Mabweijano, J.; MacIntyre, M.F.; Malekzadeh, R.; Mallinger, L.; Manivannan, S.; Marcenes, W.; March, L.; Margolis, D.J.; Marks, G.B.; Marks, R.; Matsumori, A.; Matzopoulos, R.; Mayosi, B.M.; McAnulty, J.H.; McDermott, M.M.; McGill, N.; McGrath, J.; Medina-Mora, M.E.; Meltzer, M.; Memish, Z.A.; Mensah, G.A.; Merriman, T.R.; Meyer, A-C.; Miglioli, V.; Miller, M.; Miller, T.R.; Mitchell, P.B.; Mock, C.; Mocumbi, A.O.; Moffitt, T.E.; Mokdad, A.A.; Monasta, L.; Montico, M.; Moradi-Lakeh, M.; Moran, A.; Morawska, L.; Mori, R.; Murdoch, M.E.; Mwaniki, M.K.; Naidoo, K.; Nair, M.N.; Naldi, L.; Narayan, K.M.V.; Nelson, P.K.; Nelson, R.G.; Nevitt, M.C.; Newton, C.R.; Nolte, S.; Norman, P.; Norman, R.; O’Donnell, M.; O’Hanlon, S.; Olives, C.; Omer, S.B.; Ortblad, K.; Osborne, R.; Ozgediz, D.; Page, A.; Pahari, B.; Pandian, J.D.; Rivero, A.P.; Patten, S.B.; Pearce, N.; Padilla, R.P.; Perez-Ruiz, F.; Perico, N.; Pesudovs, K.; Phillips, D.; Phillips, M.R.; Pierce, K.; Pion, S.; Polanczyk, G.V.; Polinder, S.; Pope, C.A., III; Popova, S.; Porrini, E.; Pourmalek, F.; Prince, M.; Pullan, R.L.; Ramaiah, K.D.; Ranganathan, D.; Razavi, H.; Regan, M.; Rehm, J.T.; Rein, D.B.; Remuzzi, G.; Richardson, K.; Rivara, F.P.; Roberts, T.; Robinson, C.; De Leòn, F.R.; Ronfani, L.; Room, R.; Rosenfeld, L.C.; Rushton, L.; Sacco, R.L.; Saha, S.; Sampson, U.; Sanchez-Riera, L.; Sanman, E.; Schwebel, D.C.; Scott, J.G.; Segui-Gomez, M.; Shahraz, S.; Shepard, D.S.; Shin, H.; Shivakoti, R.; Silberberg, D.; Singh, D.; Singh, G.M.; Singh, J.A.; Singleton, J.; Sleet, D.A.; Sliwa, K.; Smith, E.; Smith, J.L.; Stapelberg, N.J.C.; Steer, A.; Steiner, T.; Stolk, W.A.; Stovner, L.J.; Sudfeld, C.; Syed, S.; Tamburlini, G.; Tavakkoli, M.; Taylor, H.R.; Taylor, J.A.; Taylor, W.J.; Thomas, B.; Thomson, W.M.; Thurston, G.D.; Tleyjeh, I.M.; Tonelli, M.; Towbin, J.A.; Truelsen, T.; Tsilimbaris, M.K.; Ubeda, C.; Undurraga, E.A.; van der Werf, M.J.; van Os, J.; Vavilala, M.S.; Venketasubramanian, N.; Wang, M.; Wang, W.; Watt, K.; Weatherall, D.J.; Weinstock, M.A.; Weintraub, R.; Weisskopf, M.G.; Weissman, M.M.; White, R.A.; Whiteford, H.; Wiebe, N.; Wiersma, S.T.; Wilkinson, J.D.; Williams, H.C.; Williams, S.R.M.; Witt, E.; Wolfe, F.; Woolf, A.D.; Wulf, S.; Yeh, P-H.; Zaidi, A.K.M.; Zheng, Z-J.; Zonies, D.; Lopez, A.D. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: A systematic analysis for the global burden of disease study 2010. Lancet, 2012, 380(9859), 2197-2223.
[http://dx.doi.org/10.1016/S0140-6736(12)61689-4] [PMID: 23245608]
[2]
Murray, C. UNITAID can address HCV/HIV co-infection. Lancet, 2013, 381(9867), 628-628.
[PMID: 23439101]
[3]
Al-Mulla, A. A review: Biological importance of heterocyclic compounds. Pharma Chem., 2017, 9(13), 141-147.
[4]
Kaushik, N.; Kaushik, N.; Attri, P.; Kumar, N.; Kim, C.; Verma, A.; Choi, E. Biomedical importance of indoles. Molecules, 2013, 18(6), 6620-6662.
[http://dx.doi.org/10.3390/molecules18066620] [PMID: 23743888]
[5]
Kumari, A.; Singh, R.K. Medicinal chemistry of indole derivatives: Current to future therapeutic prospectives. Bioorg. Chem., 2019, 89, 103021.
[http://dx.doi.org/10.1016/j.bioorg.2019.103021] [PMID: 31176854]
[6]
Barluenga, J.; Valdés, C. Five‐Membered Heterocycles: Indole and Related Systems; Modern Heterocyclic Chemistry, 2011, pp. 377-531.
[7]
Dewick, P.M. Essentials of organic chemistry: For students of pharmacy, medicinal chemistry and biological chemistry; John Wiley & Sons, 2013.
[8]
Lal, S.; Snape, T.J. 2-Arylindoles: A privileged molecular scaffold with potent, broad-ranging pharmacological activity. Curr. Med. Chem., 2012, 19(28), 4828-4837.
[http://dx.doi.org/10.2174/092986712803341449] [PMID: 22830349]
[9]
Pojarová, M.; Kaufmann, D.; Gastpar, R.; Nishino, T.; Reszka, P.; Bednarski, P.J.; von Angerer, E. [(2-Phenylindol-3-yl)methylene] propanedinitriles inhibit the growth of breast cancer cells by cell cycle arrest in G2/M phase and apoptosis. Bioorg. Med. Chem., 2007, 15(23), 7368-7379.
[http://dx.doi.org/10.1016/j.bmc.2007.07.046] [PMID: 17889547]
[10]
Jasiewicz, B.; Kozanecka-Okupnik, W.; Przygodzki, M.; Warżajtis, B.; Rychlewska, U.; Pospieszny, T.; Mrówczyńska, L. Synthesis, antioxidant and cytoprotective activity evaluation of C-3 substituted indole derivatives. Sci. Rep., 2021, 11(1), 15425.
[http://dx.doi.org/10.1038/s41598-021-94904-z] [PMID: 34326403]
[11]
Bahuguna, A.; Bharatam, P.V.; Rawat, D.S. 3D QSAR studies on amphiphilic indoles for antimycobacterial activity. J. Biochem. Mol. Toxicol., 2021, 35(3), e22675.
[http://dx.doi.org/10.1002/jbt.22675] [PMID: 33347664]
[12]
Ashok, P.; Lu, C.L.; Chander, S.; Zheng, Y.T.; Murugesan, S. Design, synthesis, and biological evaluation of 1‐(thiophen‐2‐yl)‐9 H ‐pyrido[3,4‐ b]indole derivatives as anti‐ HIV ‐1 Agents. Chem. Biol. Drug Des., 2015, 85(6), 722-728.
[http://dx.doi.org/10.1111/cbdd.12456] [PMID: 25328020]
[13]
El-Hussieny, M.; El-Sayed, N.F.; Ewies, E.F.; Ibrahim, N.M.; Mahran, M.R.H.; Fouad, M.A. Synthesis, molecular docking and biological evaluation of 2-(thiophen-2-yl)-1H-indoles as potent HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg. Chem., 2020, 95, 103521.
[http://dx.doi.org/10.1016/j.bioorg.2019.103521] [PMID: 31884145]
[14]
Thanikachalam, P.V.; Maurya, R.K.; Garg, V.; Monga, V.; Monga, V. An insight into the medicinal perspective of synthetic analogs of indole: A review. Eur. J. Med. Chem., 2019, 180, 562-612.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.019] [PMID: 31344615]
[15]
Morse, G.D.; Reichman, R.C.; Fischl, M.A.; Para, M.; Leedom, J.; Powderly, W.; Demeter, L.M.; Resnick, L.; Bassiakos, Y.; Timpone, J.; Cox, S.; Batts, D. Concentration-targeted phase I trials of atevirdine mesylate in patients with HIV infection: Dosage requirements and pharmacokinetic studies. Antiviral Res., 2000, 45(1), 47-58.
[http://dx.doi.org/10.1016/S0166-3542(99)00073-X] [PMID: 10774589]
[16]
Margolis, D.A.; Eron, J.J.; DeJesus, E.; White, S.; Wannamaker, P.; Stancil, B.; Johnson, M. Unexpected finding of delayed-onset seizures in HIV-positive, treatment-experienced subjects in the Phase IIb evaluation of fosdevirine (GSK2248761). Antivir. Ther., 2014, 19(1), 69-78.
[http://dx.doi.org/10.3851/IMP2689] [PMID: 24158593]
[17]
Suleiman, M.; Hasan, A.H.; Murugesan, S.; Amran, S.I.; Jamalis, J. Advances in the synthesis of diarylpyrimidine as potent non-nucleoside reverse transcriptase inhibitors: Biological activities, molecular docking studies and structure-activity relationship: A critical review. Curr. Org. Chem., 2023, 27(8), 661-691.
[http://dx.doi.org/10.2174/1385272827666230711173329]
[18]
Ramsamooj, H.; Preuss, C.V. Fluvastatin; StatPearls: Treasure Island, FL, 2017.
[19]
Brock, G.B.; McMahon, C.G.; Chen, K.K.; Costigan, T.; Shen, W.; Watkins, V.; Anglin, G.; Whitaker, S. Efficacy and safety of tadalafil for the treatment of erectile dysfunction: Results of integrated analyses. J. Urol., 2002, 168(4 Part 1), 1332-1336.
[http://dx.doi.org/10.1016/S0022-5347(05)64442-4] [PMID: 12352386]
[20]
Galiè, N.; Brundage, B.H.; Ghofrani, H.A.; Oudiz, R.J.; Simonneau, G.; Safdar, Z.; Shapiro, S.; White, R.J.; Chan, M.; Beardsworth, A.; Frumkin, L.; Barst, R.J. Tadalafil therapy for pulmonary arterial hypertension. Circulation, 2009, 119(22), 2894-2903.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.839274] [PMID: 19470885]
[21]
Blier, P.; de Montigny, C.; Tardif, D. Effects of the two antidepres-sant drugs mianserin and indalpine on the serotonergic system: Single-cell studies in the rat. Psychopharmacology (Berl.), 1984, 84(2), 242-249.
[http://dx.doi.org/10.1007/BF00427453] [PMID: 6438684]
[22]
Treatment of migraine attacks with sumatriptan. N. Engl. J. Med., 1991, 325(5), 316-321.
[http://dx.doi.org/10.1056/NEJM199108013250504] [PMID: 1647495]
[23]
Maj, J.; Kotodziejczyk, K.; Rogóż, Z.; Skuza, G. Roxindole, a potential antidepressant I. Effect on the dopamine system. J. Neural Transm. (Vienna), 1996, 103(5), 627-641.
[http://dx.doi.org/10.1007/BF01273159] [PMID: 8811507]
[24]
Lucas, S. The pharmacology of indomethacin. Headache, 2016, 56(2), 436-446.
[http://dx.doi.org/10.1111/head.12769] [PMID: 26865183]
[25]
O'Brien, M.; McCauley, J.; Cohen, E. Indomethacin. In: Analytical profiles of drug substances; , 1984; Vol. 13, pp. 211-238.
[http://dx.doi.org/10.1016/S0099-5428(08)60192-6]
[26]
Roila, F.; Del Favero, A. Ondansetron clinical pharmacokinetics. Clin. Pharmacokinet., 1995, 29(2), 95-109.
[http://dx.doi.org/10.2165/00003088-199529020-00004] [PMID: 7586904]
[27]
Hurst, M.; Jarvis, B. Perindopril: An updated review of its use in hypertension. Drugs, 2001, 61(6), 867-896.
[http://dx.doi.org/10.2165/00003495-200161060-00020] [PMID: 11398915]
[28]
Todd, P.A.; Fitton, A. Perindopril. A review of its pharmacological properties and therapeutic use in cardiovascular disorders. Drugs, 1991, 42(1), 90-114.
[http://dx.doi.org/10.2165/00003495-199142010-00006] [PMID: 1718688]
[29]
Doan, P.; Karjalainen, A.; Chandraseelan, J.G.; Sandberg, O.; Yli-Harja, O.; Rosholm, T.; Franzen, R.; Candeias, N.R.; Kandhavelu, M. Synthesis and biological screening for cytotoxic activity of N-substituted indolines and morpholines. Eur. J. Med. Chem., 2016, 120, 296-303.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.024] [PMID: 27214140]
[30]
Billes, F.; Podea, P.V.; Mohammed-Ziegler, I.; Toşa, M.; Mikosch, H.; Irimie, D.F. Formyl- and acetylindols: Vibrational spectroscopy of an expectably pharmacologically active compound family. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2009, 74(5), 1031-1045.
[http://dx.doi.org/10.1016/j.saa.2009.08.044] [PMID: 19875329]
[31]
Mathada, S.B.; Yernale, G.N.; Basha, J.N. The multi‐pharmacological targeted role of Indole and its derivatives: A review. ChemistrySelect, 2023, 8(1), e202204181.
[http://dx.doi.org/10.1002/slct.202204181]
[32]
Zhang, L.S.; Davies, S.S. Microbial metabolism of dietary comp-onents to bioactive metabolites: Opportunities for new therapeutic interventions. Genome Med., 2016, 8(1), 46.
[http://dx.doi.org/10.1186/s13073-016-0296-x] [PMID: 27102537]
[33]
Kim, S. PubChem: A Large-Scale Public Chemical Database for Drug Discovery. In: Open Access Databases and Datasets for Drug Discovery; National Library of Medicine, National Institutes of Health: 8600 Rockville Pike, Bethesda, MD 20894, USA , 2023; pp. 39-66.
[34]
Fatima, A.; Khanum, G.; Sharma, A.; Verma, I.; Arora, H.; Sid-diqui, N.; Javed, S. Experimental spectroscopic, computational, hir-shfeld surface, molecular docking investigations on 1H-Indole-3-Carbaldehyde. Polycycl. Aromat. Compd., 2023, 43(2), 1263-1287.
[http://dx.doi.org/10.1080/10406638.2022.2026989]
[35]
Sridar, V.; Maheswari, R.; Reddy, B. An unusual oxidation of gramine methiodides under NaNO 2/DMF conditions; , 2001. Available from: https://nopr.niscpr.res.in/bitstream/123456789/24283/1/IJCB%2040B(12)%201253-1254.pdf
[36]
Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.; Mohammadpoor-baltork, I.; Sirjanian, N.; Parand, S. Polystyrene-bound Mn(T4PyP): A highly efficient and reusable catalyst for biomimetic oxidative decarboxylation of carboxylic acids with sodium periodate. Bioorg. Med. Chem., 2009, 17(9), 3394-3398.
[http://dx.doi.org/10.1016/j.bmc.2009.03.038] [PMID: 19359183]
[37]
Shi, X-X.; Quan, N.; Nie, L-D.; Dong, J.; Zhu, R-H. A green chemistry method for the regeneration of carbonyl compounds from oximes by using cupric chloride dihydrate as a recoverable promoter for hydrolysis. Synlett, 2011, 2011(7), 1028-1032.
[http://dx.doi.org/10.1055/s-0030-1259730]
[38]
Tongkhan, S.; Radchatawedchakoon, W.; Kruanetr, S.; Sakee, U. Silica-supported ceric ammonium nitrate catalyzed chemoselective formylation of indoles. Tetrahedron Lett., 2014, 55(29), 3909-3912.
[http://dx.doi.org/10.1016/j.tetlet.2014.04.124]
[39]
Ishikura, M.; Itoh, T.; Abe, T.; Nakamura, S. Cu-mediated oxidat-ive dimerization of skatole to tryptanthrin, an indolo [2, 1-b] quinazolone alkaloid. Heterocycles, 2015, 91(7), 1423-1428.
[http://dx.doi.org/10.3987/COM-15-13228]
[40]
Chen, J.; Liu, B.; Liu, D.; Liu, S.; Cheng, J. The copper‐catalyzed C‐3‐formylation of indole C-H bonds using tertiary amines and molecular oxygen. Adv. Synth. Catal., 2012, 354(13), 2438-2442.
[http://dx.doi.org/10.1002/adsc.201200345]
[41]
El-Sawy, E.; Abo-Salem, H.; Mandour, A. 1H-Indole-3-carboxaldehyde: synthesis and reactions. Egypt. J. Chem., 2017, 60(5), 723-751.
[42]
Fang, W.Y.; Ravindar, L.; Rakesh, K.P.; Manukumar, H.M.; Shantharam, C.S.; Alharbi, N.S.; Qin, H.L. Synthetic approaches and pharmaceutical applications of chloro-containing molecules for drug discovery: A critical review. Eur. J. Med. Chem., 2019, 173, 117-153.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.063] [PMID: 30995567]
[43]
Khaleel, C.; Tabanca, N.; Buchbauer, G. α-Terpineol, a natural monoterpene: A review of its biological properties. Open Chem., 2018, 16(1), 349-361.
[http://dx.doi.org/10.1515/chem-2018-0040]
[44]
Kerru, N.; Singh-Pillay, A.; Awolade, P.; Singh, P. Current anti-diabetic agents and their molecular targets: A review. Eur. J. Med. Chem., 2018, 152, 436-488.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.061] [PMID: 29751237]
[45]
Chernyshov, V.V.; Popadyuk, I.I.; Yarovaya, O.I.; Salakhutdinov, N.F. Nitrogen-containing heterocyclic compounds obtained from monoterpenes or their derivatives: Synthesis and properties. Top. Curr. Chem. (Cham), 2022, 380(5), 42.
[http://dx.doi.org/10.1007/s41061-022-00399-1] [PMID: 35951263]
[46]
Agarwal, A.; Srivastava, K.; Puri, S.K.; Chauhan, P.M.S. Synthesis of substituted indole derivatives as a new class of antimalarial agents. Bioorg. Med. Chem. Lett., 2005, 15(12), 3133-3136.
[http://dx.doi.org/10.1016/j.bmcl.2005.04.011] [PMID: 15925306]
[47]
Lakshmi, N.V.; Thirumurugan, P.; Noorulla, K.M.; Perumal, P.T. InCl3 mediated one-pot multicomponent synthesis, anti-microbial, antioxidant and anticancer evaluation of 3-pyranyl indole derivatives. Bioorg. Med. Chem. Lett., 2010, 20(17), 5054-5061.
[http://dx.doi.org/10.1016/j.bmcl.2010.07.039] [PMID: 20675130]
[48]
Jin, G.; Lee, S.; Choi, M.; Son, S.; Kim, G.W.; Oh, J.W.; Lee, C.; Lee, K. Chemical genetics-based discovery of indole derivatives as HCV NS5B polymerase inhibitors. Eur. J. Med. Chem., 2014, 75, 413-425.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.062] [PMID: 24561671]
[49]
Bahekar, R.H.; Jain, M.R.; Goel, A.; Patel, D.N.; Prajapati, V.M.; Gupta, A.A.; Jadav, P.A.; Patel, P.R. Design, synthesis, and biolo-gical evaluation of substituted-N-(thieno[2,3-b]pyridin-3-yl)-guani-dines, N-(1H-pyrrolo[2,3-b]pyridin-3-yl)-guanidines, and N-(1H-indol-3-yl)-guanidines. Bioorg. Med. Chem., 2007, 15(9), 3248-3265.
[http://dx.doi.org/10.1016/j.bmc.2007.02.029] [PMID: 17339113]
[50]
Mohareb, R.M.; Ahmed, H.H.; Elmegeed, G.A.; Abd-Elhalim, M.M.; Shafic, R.W. Development of new indole-derived neuroprotective agents. Bioorg. Med. Chem., 2011, 19(9), 2966-2974.
[http://dx.doi.org/10.1016/j.bmc.2011.03.031] [PMID: 21493072]
[51]
Meanwell, N.A.; Wallace, O.B.; Wang, H.; Deshpande, M.; Pearce, B.C.; Trehan, A.; Yeung, K.S.; Qiu, Z.; Wright, J.J.K.; Robinson, B.A.; Gong, Y.F.; Wang, H.G.H.; Blair, W.S.; Shi, P-Y.; Lin, P.; Lin, P.F. Inhibitors of HIV-1 attachment. Part 3: A preliminary sur-vey of the effect of structural variation of the benzamide moiety on antiviral activity. Bioorg. Med. Chem. Lett., 2009, 19(17), 5136-5139.
[http://dx.doi.org/10.1016/j.bmcl.2009.07.027] [PMID: 19632112]
[52]
Hall, A.; Billinton, A.; Brown, S.H.; Chowdhury, A.; Giblin, G.M.P.; Goldsmith, P.; Hurst, D.N.; Naylor, A.; Patel, S.; Scoccitti, T.; Theobald, P.J. Discovery of a novel indole series of EP1 receptor antagonists by scaffold hopping. Bioorg. Med. Chem. Lett., 2008, 18(8), 2684-2690.
[http://dx.doi.org/10.1016/j.bmcl.2008.03.018] [PMID: 18378447]
[53]
Singh, P.; Mittal, A.; Bhardwaj, A.; Kaur, S.; Kumar, S. 1-toluene-sulfonyl-3-[(3′-hydroxy-5′-substituted)-γ-butyrolactone]-indoles: S-ynthesis, COX-2 inhibition and anti-cancer activities. Bioorg. Med. Chem. Lett., 2008, 18(1), 85-89.
[http://dx.doi.org/10.1016/j.bmcl.2007.11.010] [PMID: 18061444]
[54]
Madadi, N.R.; Penthala, N.R.; Brents, L.K.; Ford, B.M.; Prather, P.L.; Crooks, P.A. Evaluation of (Z)-2-((1-benzyl-1H-indol-3-yl)methylene)-quinuclidin-3-one analogues as novel, high affinity ligands for CB1 and CB2 cannabinoid receptors. Bioorg. Med. Chem. Lett., 2013, 23(7), 2019-2021.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.025] [PMID: 23466226]
[55]
Adam, J.M.; Cairns, J.; Caulfield, W.; Cowley, P.; Cumming, I.; Easson, M.; Edwards, D.; Ferguson, M.; Goodwin, R.; Jeremiah, F.; Kiyoi, T.; Mistry, A.; Moir, E.; Morphy, R.; Tierney, J.; York, M.; Baker, J.; Cottney, J.E.; Houghton, A.K.; Westwood, P.J.; Walker, G. Design, synthesis, and structure–activity relationships of indole-3-carboxamides as novel water soluble cannabinoid CB1 receptor agonists. MedChemComm, 2010, 1(1), 54-60.
[http://dx.doi.org/10.1039/c0md00022a]
[56]
Gallant, M.; Dufresne, C.; Gareau, Y.; Guay, D.; Leblanc, Y.; Prasit, P.; Rochette, C.; Sawyer, N.; Slipetz, D.M.; Tremblay, N.; Metters, K.M.; Labelle, M. New class of potent ligands for the human peripheral cannabinoid receptor. Bioorg. Med. Chem. Lett., 1996, 6(19), 2263-2268.
[http://dx.doi.org/10.1016/0960-894X(96)00426-X]
[57]
Li, J.; Si, R.; Zhang, Q.; Li, Y.; Zhang, J.; Shan, Y. Novel indole-guanidine hybrids as potential anticancer agents: Design, synthesis and biological evaluation. Chem. Biol. Interact., 2022, 368, 110242.
[http://dx.doi.org/10.1016/j.cbi.2022.110242] [PMID: 36326519]
[58]
Tiwari, S.; Kirar, S.; Banerjee, U.C.; Neerupudi, K.B.; Singh, S.; Wani, A.A.; Bharatam, P.V.; Singh, I.P. Synthesis of N-substituted indole derivatives as potential antimicrobial and antileishmanial agents. Bioorg. Chem., 2020, 99, 103787.
[http://dx.doi.org/10.1016/j.bioorg.2020.103787] [PMID: 32251947]
[59]
Claudio Viegas-Junior,; Danuello, A.; da Silva Bolzani, V.; Bar-reiro, E.J.; Fraga, C.A. Molecular hybridization: A useful tool in the design of new drug prototypes. Curr. Med. Chem., 2007, 14(17), 1829-1852.
[http://dx.doi.org/10.2174/092986707781058805] [PMID: 17627520]
[60]
Bérubé, G. An overview of molecular hybrids in drug discovery. Expert Opin. Drug Discov., 2016, 11(3), 281-305.
[http://dx.doi.org/10.1517/17460441.2016.1135125] [PMID: 26727036]
[61]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[62]
Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem., 2015, 58(9), 4066-4072.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00104] [PMID: 25860834]
[63]
Cheng, F. admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. J. Chem. Inf. Model., 2012, 59(11), 4959.
[64]
Perwin, A.; Mazumdar, N. Synthesis of N‐Acyl Indole‐3‐carboxaldehyde derivatives and polyvinyl alcohol acetalization with 1‐Propionylindole‐3‐Carboxaldehyde. ChemistrySelect, 2024, 9(18), e202400169.
[http://dx.doi.org/10.1002/slct.202400169]
[65]
Gaur, A.; Peerzada, M.N.; Khan, N.S.; Ali, I.; Azam, A. Synthesis and anticancer evaluation of novel indole based arylsulfonylh-ydrazides against human breast cancer cells. ACS Omega, 2022, 7(46), 42036-42043.
[http://dx.doi.org/10.1021/acsomega.2c03908] [PMID: 36440122]
[66]
George, G.; Auti, P.S.; Paul, A.T. Design, synthesis, in silico molecular modelling studies and biological evaluation of novel indole-thiazolidinedione hybrid analogues as potential pancreatic lipase inhibitors. New J. Chem., 2021, 45(3), 1381-1394.
[http://dx.doi.org/10.1039/D0NJ05649A]
[67]
Yadav, M.; Lal, K.; Kumar, A.; Kumar, A.; Kumar, D. Indole-chalcone linked 1,2,3-triazole hybrids: Facile synthesis, antimicrobial evaluation and docking studies as potential antimicrobial agents. J. Mol. Struct., 2022, 1261, 132867.
[http://dx.doi.org/10.1016/j.molstruc.2022.132867]
[68]
Gordon, C.P.; Venn-Brown, B.; Robertson, M.J.; Young, K.A.; Chau, N.; Mariana, A.; Whiting, A.; Chircop, M.; Robinson, P.J.; McCluskey, A. Development of second-generation indole-based dynamin GTPase inhibitors. J. Med. Chem., 2013, 56(1), 46-59.
[http://dx.doi.org/10.1021/jm300844m] [PMID: 23167654]
[69]
Choppara, P.; Bethu, M.S.; Vara Prasad, Y.; Venkateswara Rao, J.; Uday Ranjan, T.J.; Siva Prasad, G.V.; Doradla, R.; Murthy, Y.L.N. Synthesis, characterization and cytotoxic investigations of novel bis(indole) analogues besides antimicrobial study. Arab. J. Chem., 2019, 12(8), 2721-2731.
[http://dx.doi.org/10.1016/j.arabjc.2015.05.015]
[70]
Karimabad, M.N.; Mahmoodi, M.; Jafarzadeh, A.; Darehkordi, A.; Hajizadeh, M.R.; Khorramdelazad, H.; Falahati-pour, S.K.; Hassanshahi, G. The novel Indole-3-formaldehyde (2-AITFEI-3-F) is involved in processes of apoptosis induction? Life Sci., 2017, 181, 31-44.
[http://dx.doi.org/10.1016/j.lfs.2017.05.026] [PMID: 28549559]
[71]
Darehkordi, A.; Rahmani, F.; Hashemi, V. Synthesis of new triflu-oromethylated indole derivatives. Tetrahedron Lett., 2013, 54(35), 4689-4692.
[http://dx.doi.org/10.1016/j.tetlet.2013.06.093]
[72]
Lee, J.S.; Jung, W.K.; Jeong, M.H.; Yoon, T.R.; Kim, H.K. Sanguinarine induces apoptosis of HT-29 human colon cancer cells via the regulation of Bax/Bcl-2 ratio and caspase-9-dependent pathway. Int. J. Toxicol., 2012, 31(1), 70-77.
[http://dx.doi.org/10.1177/1091581811423845] [PMID: 22215411]
[73]
Alfieri, M.L.; Panzella, L.; d’Ischia, M.; Napolitano, A. Bioin-spired heterocyclic partnership in a cyanine-type acidichromic chromophore. Molecules, 2020, 25(17), 3817.
[http://dx.doi.org/10.3390/molecules25173817] [PMID: 32839420]
[74]
Anjirwala, S.N.; Patel, S.K. Ceric ammonium nitrate catalyzed one-pot three-component microwave-assisted synthesis of indole-substituted fused pyrimidine and pyridine derivatives. Tetrahedron, 2024, 155, 133883.
[http://dx.doi.org/10.1016/j.tet.2024.133883]
[75]
Lal, K.; Yadav, P. Green synthesis and antibacterial evaluation of isatin-oxime-triazole conjugates. Chem Biol Interface., 2016, 6(4), 234-242.
[76]
Kirar, S.; Thakur, N.S.; Laha, J.K.; Bhaumik, J.; Banerjee, U.C. Development of gelatin nanoparticle-based biodegradable Phototheranostic agents: Advanced system to treat infectious diseases. ACS Biomater. Sci. Eng., 2018, 4(2), 473-482.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00751] [PMID: 33418737]
[77]
EL-Gammal, O.A.; Alshater, H.; El-Boraey, H.A. Schiff base metal complexes of 4-methyl-1H-indol-3-carbaldehyde derivative as a series of potential antioxidants and antimicrobial: Synthesis, spectroscopic characterization and 3D molecular modeling. J. Mol. Struct., 2019, 1195, 220-230.
[http://dx.doi.org/10.1016/j.molstruc.2019.05.101]
[78]
Lamie, P.F.; Ali, W.A.M.; Bazgier, V.; Rárová, L. Novel N-substituted indole Schiff bases as dual inhibitors of cycloox-ygenase-2 and 5-lipoxygenase enzymes: Synthesis, biological activities in vitro and docking study. Eur. J. Med. Chem., 2016, 123, 803-813.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.013] [PMID: 27541263]
[79]
Parthiban, A.; Sivasankar, R.; Rajdev, B.; Asha, R.N.; Jeyakumar, T.C.; Periakaruppan, R.; Naidu, V.G.M. Synthesis, in vitro, in silico and DFT studies of indole curcumin derivatives as potential anticancer agents. J. Mol. Struct., 2022, 1270, 133885.
[http://dx.doi.org/10.1016/j.molstruc.2022.133885]
[80]
Bandgar, B.P.; Kinkar, S.N.; Chavan, H.V.; Jalde, S.S.; Shaikh, R.U.; Gacche, R.N. Synthesis and biological evaluation of asymmetric indole curcumin analogs as potential anti-inflammatory and antioxidant agents. J. Enzyme Inhib. Med. Chem., 2014, 29(1), 7-11.
[http://dx.doi.org/10.3109/14756366.2012.743536] [PMID: 23356406]
[81]
Sachithanandam, V.; Lalitha, P.; Parthiban, A.; Muthukumaran, J.; Jain, M.; Misra, R.; Mageswaran, T.; Sridhar, R.; Purvaja, R.; Ramesh, R. A comprehensive in silico and in vitro studies on quinizarin: A promising phytochemical derived from Rhizophora mucronata Lam. J. Biomol. Struct. Dyn., 2022, 40(16), 7218-7229.
[http://dx.doi.org/10.1080/07391102.2021.1894983] [PMID: 33682626]
[82]
Zhao, Z.; Wolkenberg, S.E.; Lu, M.; Munshi, V.; Moyer, G.; Feng, M.; Carella, A.V.; Ecto, L.T.; Gabryelski, L.J.; Lai, M-T.; Prasad, S.G.; Yan, Y.; McGaughey, G.B.; Miller, M.D.; Lindsley, C.W.; Hartman, G.D.; Vacca, J.P.; Williams, T.M.; Williams, T.M. Novel indole-3-sulfonamides as potent HIV non-nucleoside reverse transcriptase inhibitors (NNRTIs). Bioorg. Med. Chem. Lett., 2008, 18(2), 554-559.
[http://dx.doi.org/10.1016/j.bmcl.2007.11.085] [PMID: 18083561]
[83]
Dousson, C.; Alexandre, F.R.; Amador, A.; Bonaric, S.; Bot, S.; Caillet, C.; Convard, T.; da Costa, D.; Lioure, M.P.; Roland, A.; Rosinovsky, E.; Maldonado, S.; Parsy, C.; Trochet, C.; Storer, R.; Stewart, A.; Wang, J.; Mayes, B.A.; Musiu, C.; Poddesu, B.; Vargiu, L.; Liuzzi, M.; Moussa, A.; Jakubik, J.; Hubbard, L.; Seifer, M.; Standring, D. Discovery of the aryl-phospho-indole IDX899, a highly potent anti-HIV non-nucleoside reverse transcriptase inhibitor. J. Med. Chem., 2016, 59(5), 1891-1898.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01430] [PMID: 26804933]
[84]
D’Cruz, O.J.; Qazi, S.; Yiv, S.; Uckun, F.M. A novel vaginal microbicide containing the rationally designed anti-HIV compound HI-443 (N′-[2-(2-thiophene)ethyl]-N′-[2-(5-bromopyridyl)] thiou-rea]). Expert Opin. Investig. Drugs, 2012, 21(3), 265-279.
[http://dx.doi.org/10.1517/13543784.2012.655422] [PMID: 22292483]
[85]
Bonini, C.; Chiummiento, L.; Bonis, M.D.; Funicello, M.; Lupattelli, P.; Suanno, G.; Berti, F.; Campaner, P. Synthesis, biological activity and modelling studies of two novel anti HIV PR inhibitors with a thiophene containing hydroxyethylamino core. Tetrahedron, 2005, 61(27), 6580-6589.
[http://dx.doi.org/10.1016/j.tet.2005.04.048]
[86]
Uckun, F.M.; Tibbles, H.E.; Venkatachalam, T.K.; Erbeck, D. In vivo pharmacokinetics, metabolism, toxicity, and anti-HIV activity of N′-[2-(2-Thiophene)ethyl]-N′-[2-(5-bromopyridyl)]thiourea (HI-443), a potent non-nucleoside inhibitor of HIV reverse transcr-iptase. Arzneimittelforschung, 2007, 57(7), 483-496.
[PMID: 17803063]
[87]
Hafez, T.S. Organophosphorus chemistry, 36 [1] reactions of furobenzopyran-6-carboxaldehydes with alkyl phosphites and ylidenetriphenylphosphoranes. Egypt. J. Chem., 2007, (Special Issue), 45-58.
[88]
Ewies, E.F.; Elsayed, N.F.; Boulos, L.S.; Soliman, A-M.M. Synthesis of novel 1, 2-diphenylpyrrole derivatives using organophosphorus reagents and their antitumour activities. J. Chem. Res., 2014, 38(6), 325-330.
[http://dx.doi.org/10.3184/174751914X13976652851990]
[89]
Fernandez, I.; Galvez, C.; Urpi, L. Synthesis of 3-VINYL-2-ARYL (HETEROARYL) Indoles In: Annals of chemistry Real soc espan chemistry faculty of chemical physics ciudad univ: madrid, spain,; , 1991.
[90]
Cadogan, J.I.G. Organophosphorus reagents in organic synthesis; Academic Press, 1979.
[91]
Lemster, T.; Pindur, U.; Lenglet, G.; Depauw, S.; Dassi, C.; David-Cordonnier, M.H. Photochemical electrocyclisation of 3-vinylindoles to pyrido[2,3-a]-, pyrido[4,3-a]- and thieno[2,3-a]-carbazoles: Design, synthesis, DNA binding and antitumor cell cytotoxicity. Eur. J. Med. Chem., 2009, 44(8), 3235-3252.
[http://dx.doi.org/10.1016/j.ejmech.2009.03.026] [PMID: 19386396]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy