Abstract
Sulfated glycosaminoglycans (SGAGs), such as heparin, are complex linear polysaccharides attached to core proteins via covalent bonds to form proteoglycans. SGAGs are crucial in assembling extracellular matrix, the regulation of cell signaling and cell behavior, hemostasis, development, and various diseases, including thrombosis, cancer, infectious diseases, and neurodegenerative disorders, through their binding with diverse proteins. Despite the abundant SGAG-protein interactions provided by nature, the development of small SGAG-like molecules remains underexplored. However, sulfonated penta-galloyl glucose (SPGG) represents a promising, easily synthesized, small-molecule mimetic of SGAGs, capable of harnessing these interactions. This minireview discusses the chemical synthesis and characterization of SPGG, along with its pharmacological effects derived from modulating the SGAG-protein interface.
Keywords: Glycosaminoglycans, heparin(s), SPGG, anticoagulant, antiviral, anti-inflammatory, anticancer.