Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Hydroxamic Acids Derivatives: Greener Synthesis, Antiureolytic Properties and Potential Medicinal Chemistry Applications - A Concise Review

Author(s): Luciana P. S. Viana, Luan R. Pinheiro, Lorenzo W. Petrillo, Isabela G. Medeiros, Taina G. Rizo, Luzia V. Modolo, Cleiton M. da Silva* and Ângelo de Fatima*

Volume 25, Issue 1, 2025

Published on: 31 October, 2024

Page: [141 - 161] Pages: 21

DOI: 10.2174/0115680266322401241021073138

Price: $65

Abstract

Hydroxamic acids (HAs) are chemical compounds characterized by the general structure RCONR'OH, where R and R' can denote hydrogen, aryl, or alkyl groups. Recognized for their exceptional chelating capabilities, HAs can form mono or bidentate complexes through oxygen and nitrogen atoms, rendering them remarkably versatile. These distinctive structural attributes have paved the way for a broad spectrum of medicinal applications for HAs, among which their pivotal role as inhibitors of essential Ni(II) and Zn(II)-containing metalloenzymes. In 1962, a significant breakthrough occurred when Kobashi and colleagues identified hydroxamic acids (HAs) as potent urease inhibitors. Subsequent research has increasingly underscored their capability in combatting infections induced by ureolytic microorganisms, including Helicobacter pylori and Proteus mirabilis. However, comprehensive reviews exploring their potential applications in treating infections caused by ureolytic microorganisms remain scarce in the scientific literature. Thus, this minireview aims to bridge this gap by offering a systematic exploration of the subject. Furthermore, it seeks to explore the significant advancements in obtaining hydroxamic acid derivatives through environmentally sustainable methodologies.

Keywords: Hydroxamic acids, Greener synthesis, Urease inhibitors, Medicinal applications, Helicobacter pylori, Microorganisms.

Graphical Abstract
[1]
Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; Johnson, S.C.; Browne, A.J.; Chipeta, M.G.; Fell, F.; Hackett, S.; Haines-Woodhouse, G.; Kashef Hamadani, B.H.; Kumaran, E.A.P.; McManigal, B.; Achalapong, S.; Agarwal, R.; Akech, S.; Albertson, S.; Amuasi, J.; Andrews, J.; Aravkin, A.; Ashley, E.; Babin, F-X.; Bailey, F.; Baker, S.; Basnyat, B.; Bekker, A.; Bender, R.; Berkley, J.A.; Bethou, A.; Bielicki, J.; Boonkasidecha, S.; Bukosia, J.; Carvalheiro, C.; Castañeda-Orjuela, C.; Chansamouth, V.; Chaurasia, S.; Chiurchiù, S.; Chowdhury, F.; Clotaire Donatien, R.; Cook, A.J.; Cooper, B.; Cressey, T.R.; Criollo-Mora, E.; Cunningham, M.; Darboe, S.; Day, N.P.J.; De Luca, M.; Dokova, K.; Dramowski, A.; Dunachie, S.J.; Duong Bich, T.; Eckmanns, T.; Eibach, D.; Emami, A.; Feasey, N.; Fisher-Pearson, N.; Forrest, K.; Garcia, C.; Garrett, D.; Gastmeier, P.; Giref, A.Z.; Greer, R.C.; Gupta, V.; Haller, S.; Haselbeck, A.; Hay, S.I.; Holm, M.; Hopkins, S.; Hsia, Y.; Iregbu, K.C.; Jacobs, J.; Jarovsky, D.; Javanmardi, F.; Jenney, A.W.J.; Khorana, M.; Khusuwan, S.; Kissoon, N.; Kobeissi, E.; Kostyanev, T.; Krapp, F.; Krumkamp, R.; Kumar, A.; Kyu, H.H.; Lim, C.; Lim, K.; Limmathurotsakul, D.; Loftus, M.J.; Lunn, M.; Ma, J.; Manoharan, A.; Marks, F.; May, J.; Mayxay, M.; Mturi, N.; Munera-Huertas, T.; Musicha, P.; Musila, L.A.; Mussi-Pinhata, M.M.; Naidu, R.N.; Nakamura, T.; Nanavati, R.; Nangia, S.; Newton, P.; Ngoun, C.; Novotney, A.; Nwakanma, D.; Obiero, C.W.; Ochoa, T.J.; Olivas-Martinez, A.; Olliaro, P.; Ooko, E.; Ortiz-Brizuela, E.; Ounchanum, P.; Pak, G.D.; Paredes, J.L.; Peleg, A.Y.; Perrone, C.; Phe, T.; Phommasone, K.; Plakkal, N.; Ponce-de-Leon, A.; Raad, M.; Ramdin, T.; Rattanavong, S.; Riddell, A.; Roberts, T.; Robotham, J.V.; Roca, A.; Rosenthal, V.D.; Rudd, K.E.; Russell, N.; Sader, H.S.; Saengchan, W.; Schnall, J.; Scott, J.A.G.; Seekaew, S.; Sharland, M.; Shivamallappa, M.; Sifuentes-Osornio, J.; Simpson, A.J.; Steenkeste, N.; Stewardson, A.J.; Stoeva, T.; Tasak, N.; Thaiprakong, A.; Thwaites, G.; Tigoi, C.; Turner, C.; Turner, P.; van Doorn, H.R.; Velaphi, S.; Vongpradith, A.; Vongsouvath, M.; Vu, H.; Walsh, T.; Walson, J.L.; Waner, S.; Wangrangsimakul, T.; Wannapinij, P.; Wozniak, T.; Young Sharma, T.E.M.W.; Yu, K.C.; Zheng, P.; Sartorius, B.; Lopez, A.D.; Stergachis, A.; Moore, C.; Dolecek, C.; Naghavi, M. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet, 2022, 399(10325), 629-655.
[http://dx.doi.org/10.1016/S0140-6736(21)02724-0] [PMID: 35065702]
[2]
Muri, E.; Nieto, M.; Sindelar, R.; Williamson, J. Hydroxamic acids as pharmacological agents. Curr. Med. Chem., 2002, 9(17), 1631-1653.
[http://dx.doi.org/10.2174/0929867023369402] [PMID: 12171558]
[3]
Rutherford, J.C. The emerging role of urease as a general microbial virulence factor. PLoS Pathog., 2014, 10(5), e1004062.
[http://dx.doi.org/10.1371/journal.ppat.1004062] [PMID: 24831297]
[4]
Hameed, A.; Al-Rashida, M.; Uroos, M.; Qazi, S.U.; Naz, S.; Ishtiaq, M.; Khan, K.M. A patent update on therapeutic applications of urease inhibitors (2012–2018). Expert Opin. Ther. Pat., 2019, 29(3), 181-189.
[http://dx.doi.org/10.1080/13543776.2019.1584612] [PMID: 30776929]
[5]
Wynendaele, E.; Furman, C.; Wielgomas, B.; Larsson, P.; Hak, E.; Block, T.; Van Calenbergh, S.; Willand, N.; Markuszewski, M.; Odell, L.R.; Poelarends, G.J.; De Spiegeleer, B. Sustainability in drug discovery. Med. Drug Discov., 2021, 12, 100107.
[http://dx.doi.org/10.1016/j.medidd.2021.100107]
[6]
Polshettiwar, V.; Varma, R.S. Aqueous microwave chemistry: A clean and green synthetic tool for rapid drug discovery. Chem. Soc. Rev., 2008, 37(8), 1546-1557.
[http://dx.doi.org/10.1039/b716534j] [PMID: 18648680]
[7]
Syed, Z.; Sonu, K.; Dongre, A.; Sharma, G.; Sogani, M. A review on hydroxamic acids: Widespectrum chemotherapeutic agents. Int J Bio Biomed Eng, 2020, 14, 75-88.
[http://dx.doi.org/10.46300/91011.2020.14.12]
[8]
Citarella, A.; Moi, D.; Pinzi, L.; Bonanni, D.; Rastelli, G. Hydroxamic acid derivatives: From synthetic strategies to medicinal chemistry applications. ACS Omega, 2021, 6(34), 21843-21849.
[http://dx.doi.org/10.1021/acsomega.1c03628] [PMID: 34497879]
[9]
Neganova, M.E.; Klochkov, S.G.; Aleksandrova, Y.R.; Aliev, G. The hydroxamic acids as potential anticancer and neuroprotective agents. Curr. Med. Chem., 2021, 28(39), 8139-8162.
[http://dx.doi.org/10.2174/0929867328666201218123154] [PMID: 33342403]
[10]
Kar, S.; Sanderson, H.; Roy, K.; Benfenati, E.; Leszczynski, J. Green chemistry in the synthesis of pharmaceuticals. Chem. Rev., 2022, 122(3), 3637-3710.
[http://dx.doi.org/10.1021/acs.chemrev.1c00631] [PMID: 34910451]
[11]
Sheldon, R.A. Fundamentals of green chemistry: Efficiency in reaction design. Chem. Soc. Rev., 2012, 41(4), 1437-1451.
[http://dx.doi.org/10.1039/C1CS15219J] [PMID: 22033698]
[12]
Kharissova, O.V.; Kharisov, B.I.; Oliva González, C.M.; Méndez, Y.P.; López, I. Greener synthesis of chemical compounds and materials. R. Soc. Open Sci., 2019, 6(11), 191378.
[http://dx.doi.org/10.1098/rsos.191378] [PMID: 31827868]
[13]
Taubner, T.; Marounek, M.; Synytsya, A. Preparation and characterization of hydrophobic and hydrophilic amidated derivatives of carboxymethyl chitosan and carboxymethyl β-glucan. Int. J. Biol. Macromol., 2020, 163, 1433-1443.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.257] [PMID: 32738322]
[14]
Giacomini, E.; Nebbioso, A.; Ciotta, A.; Ianni, C.; Falchi, F.; Roberti, M.; Tolomeo, M.; Grimaudo, S.; Cristina, A.D.; Pipitone, R.M.; Altucci, L.; Recanatini, M. Novel antiproliferative chimeric compounds with marked histone deacetylase inhibitory activity. ACS Med. Chem. Lett., 2014, 5(9), 973-978.
[http://dx.doi.org/10.1021/ml5000959] [PMID: 25221651]
[15]
Géraldy, M.; Morgen, M.; Sehr, P.; Steimbach, R.R.; Moi, D.; Ridinger, J.; Oehme, I.; Witt, O.; Malz, M.; Nogueira, M.S.; Koch, O.; Gunkel, N.; Miller, A.K. Selective inhibition of histone deacetylase 10: Hydrogen bonding to the gatekeeper residue is implicated. J. Med. Chem., 2019, 62(9), 4426-4443.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01936] [PMID: 30964290]
[16]
Ibrahim, T.S.; Moustafa, A.H.; Almalki, A.J.; Allam, R.M.; Althagafi, A.; Md, S.; Mohamed, M.F.A. Novel chalcone/aryl carboximidamide hybrids as potent anti-inflammatory via inhibition of prostaglandin E2 and inducible NO synthase activities: Design, synthesis, molecular docking studies and ADMET prediction. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 1067-1078.
[http://dx.doi.org/10.1080/14756366.2021.1929201] [PMID: 34027787]
[17]
Alam, M.A. Methods for hydroxamic acid synthesis. Curr. Org. Chem., 2019, 23(9), 978-993.
[http://dx.doi.org/10.2174/1385272823666190424142821] [PMID: 32565717]
[18]
Ho, C.Y.; Strobel, E.; Ralbovsky, J.; Galemmo, R.A., Jr Improved solution- and solid-phase preparation of hydroxamic acids from esters. J. Org. Chem., 2005, 70(12), 4873-4875.
[http://dx.doi.org/10.1021/jo050036f] [PMID: 15932334]
[19]
Shinji, C.; Maeda, S.; Imai, K.; Yoshida, M.; Hashimoto, Y.; Miyachi, H. Design, synthesis, and evaluation of cyclic amide/imide-bearing hydroxamic acid derivatives as class-selective histone deacetylase (HDAC) inhibitors. Bioorg. Med. Chem., 2006, 14(22), 7625-7651.
[http://dx.doi.org/10.1016/j.bmc.2006.07.008] [PMID: 16877001]
[20]
Matlin, S.A.; Sammes, P.G.; Upton, R.M. The oxidation of trimethylsilylated amides to hydroxamic acids. J. Chem. Soc., Perkin Trans. 1, 1979, 2481-2487.
[http://dx.doi.org/10.1039/p19790002481]
[21]
Yale, H.L. The hydroxamic acids. Chem. Rev., 1943, 33(3), 209-256.
[http://dx.doi.org/10.1021/cr60106a002]
[22]
Porcheddu, A.; Giacomelli, G. Synthesis of oximes and hydroxamic acids. In: The Chemistry of Hydroxylamines, Oximes and Hydroxamic acids; Rappoport, Z.; Liebman, J.F., Eds.; John Wiley & Sons, Ltd.: Chichester, 2008; pp. 163-231.
[http://dx.doi.org/10.1002/9780470741962.ch6]
[23]
Angeli, A. Nitrohydroxylamine. Gazz. Chim. Ital., 1896, 26(2), 17-25.
[24]
Dettori, G.; Gaspa, S.; Porcheddu, A.; De Luca, L. One-pot synthesis of hydroxamic acids from aldehydes and hydroxylamine. Adv. Synth. Catal., 2014, 356(11-12), 2709-2713.
[http://dx.doi.org/10.1002/adsc.201400188]
[25]
Rimini, E. About a new reaction of the alhdehydes. Gazz. Chim. Ital., 1901, 31, 84-93.
[26]
Giacomelli, G.; Porcheddu, A.; Salaris, M. Simple one-flask method for the preparation of hydroxamic acids. Org. Lett., 2003, 5(15), 2715-2717.
[http://dx.doi.org/10.1021/ol034903j] [PMID: 12868897]
[27]
Mountanea, O.G.; Mantzourani, C.; Kokotou, M.G.; Kokotos, C.G.; Kokotos, G. Sunlight‐ or UVA‐light‐mediated synthesis of hydroxamic acids from carboxylic acids. Eur. J. Org. Chem., 2023, 26(13), e202300046.
[http://dx.doi.org/10.1002/ejoc.202300046]
[28]
Papadopoulos, G.N.; Kokotos, C.G. Photoorganocatalytic one‐pot synthesis of hydroxamic acids from aldehydes. Chemistry, 2016, 22(20), 6964-6967.
[http://dx.doi.org/10.1002/chem.201600333] [PMID: 27038037]
[29]
Nikitas, N.F.; Apostolopoulou, M.K.; Skolia, E.; Tsoukaki, A.; Kokotos, C.G. Photochemical activation of aromatic aldehydes: Synthesis of amides, hydroxamic acids and esters. Chemistry, 2021, 27(29), 7915-7922.
[http://dx.doi.org/10.1002/chem.202100655] [PMID: 33772903]
[30]
Gangrade, D.; Sd, L.; Al, M. Overview on microwave synthesis – Important tool for green Chemistry. Int J Res Pharm Sci, 2015, 5(2), 37-42.
[31]
Mordini, A.; Massaro, A.; Reginato, G.; Russo, F.; Taddei, M. Microwave-assisted transformation of esters into hydroxamic acids. Synthesis, 2007, 2007(20), 3201-3204.
[http://dx.doi.org/10.1055/s-2007-990803]
[32]
Mikra, C.; Melissari, Z.; Kokotou, M.G.; Gritzapis, P.; Fylaktakidou, K.C. Microwave-assisted synthesis of hydroxamic acid incorporated quinazolin-4[3H]-one derivatives. Sustain. Chem. Pharm., 2022, 29, 100772.
[http://dx.doi.org/10.1016/j.scp.2022.100772]
[33]
Kurz, T.; Pein, M.K.; Marek, L.; Behrendt, C.T.; Spanier, L.; Kuna, K.; Brücher, K. Microwave-assisted conversion of 4-nitrophenyl esters into 0-protected hydroxamic acids. Eur. J. Org. Chem., 2009, 2009(18), 2939-2942.
[http://dx.doi.org/10.1002/ejoc.200900201]
[34]
Bhatia, R.K.; Bhatia, S.K.; Mehta, P.K.; Bhalla, T.C. Bench scale production of benzohydroxamic acid using acyl transfer activity of amidase from Alcaligenes sp. MTCC 10674. J. Ind. Microbiol. Biotechnol., 2013, 40(1), 21-27.
[http://dx.doi.org/10.1007/s10295-012-1206-x] [PMID: 23065258]
[35]
Vejvoda, V.; Martínková, L.; Veselá, A.B.; Kaplan, O.; Lutz-Wahl, S.; Fischer, L.; Uhnáková, B. Biotransformation of nitriles to hydroxamic acids via a nitrile hydratase–amidase cascade reaction. J. Mol. Catal., B Enzym., 2011, 71(1-2), 51-55.
[http://dx.doi.org/10.1016/j.molcatb.2011.03.008]
[36]
Agarwal, S.; Gupta, M.; Choudhury, B. Bioprocess development for nicotinic acid hydroxamate synthesis by acyltransferase activity of Bacillus smithii strain IITR6b2. J. Ind. Microbiol. Biotechnol., 2013, 40(9), 937-946.
[http://dx.doi.org/10.1007/s10295-013-1299-x] [PMID: 23794117]
[37]
Dadd, M.R.; Claridge, T.D.W.; Pettman, A.J.; Knowles, C.J. Biotransformation of benzonitrile to benzohydroxamic acid by Rhodococcus rhodochrous in the presence of hydroxylamine. Biotechnol. Lett., 2001, 23(3), 221-225.
[http://dx.doi.org/10.1023/A:1005657206039]
[38]
Fournand, D.; Vaysse, L.; Dubreucq, E.; Arnaud, A.; Galzy, P. Monohydroxamic acid biosynthesis. J. Mol. Catal., B Enzym., 1998, 5(1-4), 207-211.
[http://dx.doi.org/10.1016/S1381-1177(98)00036-8]
[39]
Fournand, D.; Bigey, F.; Ratomahenina, R.; Arnaud, A.; Galzy, P. Biocatalyst improvement for the production of short-chain hydroxamic acids. Enzyme Microb. Technol., 1997, 20(6), 424-431.
[http://dx.doi.org/10.1016/S0141-0229(96)00170-6]
[40]
Vaysse, L.; Dubreucq, E.; Pirat, J.L.; Galzy, P. Fatty hydroxamic acid biosynthesis in aqueous medium in the presence of the lipase-acyltransferase from Candida parapsilosis. J. Biotechnol., 1997, 53(1), 41-46.
[http://dx.doi.org/10.1016/S0168-1656(96)01660-4] [PMID: 9165758]
[41]
Servat, F.; Montet, D.; Pina, M.; Galzy, P.; Arnaud, A.; Ledon, H.; Marcou, L.; Graille, J. Synthesis of fatty hydroxamic acids catalyzed by the lipase of Mucor miehei. J. Am. Oil Chem. Soc., 1990, 67(10), 646-649.
[http://dx.doi.org/10.1007/BF02540415]
[42]
Jahangirian, H.; Haron, M.J.; Silong, S.; Yusof, N.A. Enzymatic synthesis of phenyl fatty hydroxamic acids from canola and palm oils. J. Oleo Sci., 2011, 60(6), 281-286.
[http://dx.doi.org/10.5650/jos.60.281] [PMID: 21606615]
[43]
Jahangirian, H.; Haron, M.J.; Yusof, N.A.; Silong, S.; Kassim, A.; Rafiee-Moghaddam, R.; Peyda, M.; Gharayebi, Y. Enzymatic synthesis of fatty hydroxamic acid derivatives based on palm kernel oil. Molecules, 2011, 16(8), 6634-6644.
[http://dx.doi.org/10.3390/molecules16086634] [PMID: 25134767]
[44]
Kobashi, K.; Hase, J.; Uehara, K. Specific inhibition of urease by hydroxamic acids. Biochim. Biophys. Acta, 1962, 65(2), 380-383.
[http://dx.doi.org/10.1016/0006-3002(62)91067-3] [PMID: 14033904]
[45]
Kobashi, K.; Hase, J.; Komai, T. Evidence for the formation of an inactive urease-hydroxamic acid complex. Biochem. Biophys. Res. Commun., 1966, 23(1), 34-38.
[http://dx.doi.org/10.1016/0006-291X(66)90265-8] [PMID: 5928891]
[46]
Hase, J.; Kobashi, K. Inhibition of Proteus vulgaris urease by hydroxamic acids. J. Biochem., 1967, 62(3), 293-299.
[PMID: 5586497]
[47]
Fishbein, W.N.; Carbone, P.P. Urease catalysis. J. Biol. Chem., 1965, 240(6), 2407-2414.
[http://dx.doi.org/10.1016/S0021-9258(18)97338-2] [PMID: 14304845]
[48]
Dixon, N.E.; Hinds, J.A.; Fihelly, A.K.; Gazzola, C.; Winzor, D.J.; Blakeley, R.L.; Zerner, B. Jack bean urease (EC 3.5.1.5). IV. The molecular size and the mechanism of inhibition by hydroxamic acids. Spectrophotometric titration of enzymes with reversible inhibitors. Can. J. Biochem., 1980, 58(12), 1323-1334.
[http://dx.doi.org/10.1139/o80-180] [PMID: 7248834]
[49]
Dixon, N.E.; Gazzola, C.; Watters, J.J.; Blakeley, R.L.; Zerner, B. Inhibition of jack bean urease (EC 3.5.1.5) by acetohydroxamic acid and by phosphoramidate. Equivalent weight for urease. J. Am. Chem. Soc., 1975, 97(14), 4130-4131.
[http://dx.doi.org/10.1021/ja00847a044] [PMID: 1159215]
[50]
Blakeley, R.L.; Hinds, J.A.; Kunze, H.E.; Webb, E.C.; Zerner, B. Jack bean urease (EC 3.5.1.5). Demonstration of a carbamoyl-transfer reaction and inhibition by hydroxamic acids. Biochemistry, 1969, 8(5), 1991-2000.
[http://dx.doi.org/10.1021/bi00833a032] [PMID: 5785219]
[51]
Todd, M.J.; Hausinger, R.P. Competitive inhibitors of Klebsiella aerogenes urease. Mechanisms of interaction with the nickel active site. J. Biol. Chem., 1989, 264(27), 15835-15842.
[http://dx.doi.org/10.1016/S0021-9258(18)71553-6] [PMID: 2674118]
[52]
Mobley, H.L.; Hausinger, R.P. Microbial ureases: Significance, regulation, and molecular characterization. Microbiol. Rev., 1989, 53(1), 85-108.
[http://dx.doi.org/10.1128/mr.53.1.85-108.1989] [PMID: 2651866]
[53]
Kobashi, K.; Kumaki, K.; Hase, J. Effect of acyl residues of hydroxamic acids on urease inhibition. Biochimica et Biophysica Acta (BBA) - Enzymol, 1971, 227(2), 429-441.
[http://dx.doi.org/10.1016/0005-2744(71)90074-X] [PMID: 5550827]
[54]
Kumaki, K.; Tomioka, S.; Kobashi, K.; Hase, J. Structure-activity correlations between hydroxamic acids and their inhibitory powers on urease activity. I. A quantitative approach to the effect of hydrophobic character of acyl residue. Chem. Pharm. Bull. (Tokyo), 1972, 20(8), 1599-1606.
[http://dx.doi.org/10.1248/cpb.20.1599] [PMID: 4639301]
[55]
Stemmler, A.J.; Kampf, J.W.; Kirk, M.L.; Pecoraro, V.L. A model for the inhibition of urease by hydroxamates. J. Am. Chem. Soc., 1995, 117(23), 6368-6369.
[http://dx.doi.org/10.1021/ja00128a031]
[56]
Arnold, M.; Brown, D.A.; Deeg, O.; Errington, W.; Haase, W.; Herlihy, K.; Kemp, T.J.; Nimir, H.; Werner, R. Hydroxamate-bridged dinuclear nickel complexes as models for urease inhibition. Inorg. Chem., 1998, 37(12), 2920-2925.
[http://dx.doi.org/10.1021/ic9711628]
[57]
Benini, S.; Rypniewski, W.R.; Wilson, K.S.; Miletti, S.; Ciurli, S.; Mangani, S. The complex of Bacillus pasteurii urease with acetohydroxamate anion from X-ray data at 1.55 Å resolution. J. Biol. Inorg. Chem., 2000, 5(1), 110-118.
[http://dx.doi.org/10.1007/s007750050014] [PMID: 10766443]
[58]
Ha, N.C.; Oh, S.T.; Sung, J.Y.; Cha, K.A.; Lee, M.H.; Oh, B.H. Supramolecular assembly and acid resistance of Helicobacter pylori urease. Nat. Struct. Biol., 2001, 8(6), 505-509.
[http://dx.doi.org/10.1038/88563] [PMID: 11373617]
[59]
Pearson, M.A.; Michel, L.O.; Hausinger, R.P.; Karplus, P.A. Structures of Cys319 variants and acetohydroxamate-inhibited Klebsiella aerogenes urease. Biochemistry, 1997, 36(26), 8164-8172.
[http://dx.doi.org/10.1021/bi970514j] [PMID: 9201965]
[60]
Suenaga, S.; Takano, Y.; Saito, T. Unraveling binding mechanism and stability of urease inhibitors: A QM/MM MD study. Molecules, 2023, 28(6), 2697.
[http://dx.doi.org/10.3390/molecules28062697] [PMID: 36985670]
[61]
Amtul, Z.; Atta-ur-Rahman, B.S.P.; Siddiqui, R.; Choudhary, M. Chemistry and mechanism of urease inhibition. Curr. Med. Chem., 2002, 9(14), 1323-1348.
[http://dx.doi.org/10.2174/0929867023369853] [PMID: 12132990]
[62]
Viana, L.P.S.; Naves, G.M.; Medeiros, I.G.; Guimarães, A.S.; Sousa, E.S.; Santos, J.C.C.; Freire, N.M.L.; de Aquino, T.M.; Modolo, L.V.; de Fátima, Â.; da Silva, C.M. Synergizing structure and function: Cinnamoyl hydroxamic acids as potent urease inhibitors. Bioorg. Chem., 2024, 146, 107247.
[http://dx.doi.org/10.1016/j.bioorg.2024.107247] [PMID: 38493635]
[63]
Fishbein, W.N. Urease inhibitors for hepatic coma: Inhibition of 14C-urea hydrolysis in mice by alkyl hydroxamates. Biochem. Med., 1967, 1(2), 111-128.
[http://dx.doi.org/10.1016/0006-2944(67)90001-4]
[64]
Martelli, A.; Buli, P.; Spatafora, S. Clinical experience with low dosage of propionohydroxamic acid (PHA) in infected renal stones. Urology, 1986, 28(5), 373-375.
[http://dx.doi.org/10.1016/0090-4295(86)90064-6] [PMID: 3787895]
[65]
Griffith, D.P.; Gibson, J.R.; Clinton, C.W.; Musher, D.M. Acetohydroxamic acid: Clinical studies of a urease inhibitor in patients with staghorn renal calculi. J. Urol., 1978, 119(1), 9-15.
[http://dx.doi.org/10.1016/S0022-5347(17)57366-8] [PMID: 23442]
[66]
Fishbein, W.N.; Carbone, P.P.; Hochstein, H.D. Acetohydroxamate: Bacterial urease inhibitor with therapeutic potential in hyperammonaemic states. Nature, 1965, 208(5005), 46-48.
[http://dx.doi.org/10.1038/208046a0] [PMID: 5886683]
[67]
Mobley, H. L. T.; Hu, L.T.; Foxall, P. A. Helicobacter pylori urease: Properties and role in pathogenesis. Scand. J. Gastroenterol., 1991, 26, 39-46.
[http://dx.doi.org/10.3109/00365529109098223]
[68]
Tsuda, M.; Karita, M.; Morshed, M.G.; Okita, K.; Nakazawa, T. A urease-negative mutant of Helicobacter pylori constructed by allelic exchange mutagenesis lacks the ability to colonize the nude mouse stomach. Infect. Immun., 1994, 62(8), 3586-3589.
[http://dx.doi.org/10.1128/iai.62.8.3586-3589.1994] [PMID: 8039935]
[69]
Andrutis, K.A.; Fox, J.G.; Schauer, D.B.; Marini, R.P.; Murphy, J.C.; Yan, L.; Solnick, J.V. Inability of an isogenic urease-negative mutant stain of Helicobacter mustelae to colonize the ferret stomach. Infect. Immun., 1995, 63(9), 3722-3725.
[http://dx.doi.org/10.1128/iai.63.9.3722-3725.1995] [PMID: 7642314]
[70]
Eaton, K.A.; Brooks, C.L.; Morgan, D.R.; Krakowka, S. Essential role of urease in pathogenesis of gastritis induced by Helicobacter pylori in gnotobiotic piglets. Infect. Immun., 1991, 59(7), 2470-2475.
[http://dx.doi.org/10.1128/iai.59.7.2470-2475.1991] [PMID: 2050411]
[71]
Ferrero, R.L.; Lee, A. The importance of urease in acid protection for the gastric-colonising bacteria Helicobacter pylori and Helicobacter felis sp. nov. Microb. Ecol. Health Dis., 1991, 4(3), 121-134.
[http://dx.doi.org/10.3109/08910609109140133]
[72]
Armbruster, C.E.; Mobley, H.L.T.; Pearson, M.M. Pathogenesis of Proteus mirabilis infection. Ecosal Plus, 2018, 8(1)
[http://dx.doi.org/10.1128/ecosalplus.esp-0009-2017] [PMID: 29424333]
[73]
Schaffer, J.N.; Pearson, M.M. Proteus mirabilis and urinary tract infections. In: Urinary Tract Infections; Mulvey, Matthew A.; Klumpp, David J.; Stapleton, Ann E., Eds.; ASM Press: Washington, DC, USA, 2016; pp. 383-433.
[http://dx.doi.org/10.1128/9781555817404.ch17]
[74]
Griffith, D.P.; Musher, D.M. Acetohydroxamic acid. Urology, 1975, 5(3), 299-302.
[http://dx.doi.org/10.1016/0090-4295(75)90142-9] [PMID: 1118989]
[75]
Marwick, C. New drugs selectively inhibit kidney stone formation. JAMA, 1983, 250(3), 321-322.
[http://dx.doi.org/10.1001/jama.1983.03340030003001] [PMID: 6854890]
[76]
Williams, J.J.; Rodman, J.S.; Peterson, C.M. A randomized double-blind study of acetohydroxamic acid in struvite nephrolithiasis. N. Engl. J. Med., 1984, 311(12), 760-764.
[http://dx.doi.org/10.1056/NEJM198409203111203] [PMID: 6472365]
[77]
Bailie, N.C.; Osborne, C.A.; Leininger, J.R.; Fletcher, T.F.; Johnston, S.D.; Ogburn, P.N.; Griffith, D.P. Teratogenic effect of acetohydroxamic acid in clinically normal beagles. Am. J. Vet. Res., 1986, 47(12), 2604-2611.
[PMID: 3800119]
[78]
Chaube, S.; Murphy, M.L. The effects of hydroxyurea and related compounds on the rat fetus. Cancer Res., 1966, 26(7), 1448-1457.
[PMID: 5911587]
[79]
Philips, F.S.; Sternberg, S.S.; Schwartz, H.S.; Cronin, A.P.; Sodergren, J.E.; Vidal, P.M. Hydroxyurea. I. Acute cell death in proliferating tissues in rats. Cancer Res., 1967, 27(1), 61-75.
[PMID: 6020366]
[80]
Munakata, K.; Tanaka, S.; Toyoshima, S. Therapy for urolithiasis with hydroxamic acids. I. Synthesis of new N-(aroyl)glycinohydroxamic acid derivatives and related compounds. Chem. Pharm. Bull. (Tokyo), 1980, 28(7), 2045-2051.
[http://dx.doi.org/10.1248/cpb.28.2045]
[81]
Kobashi, K.; Munakata, K.; Takebe, S.; Hase, J. Therapy for urolithiasis by hydroxamic acids. II. Urease inhibitory potency and urinary excretion rate of hippurohydroxamic acid derivatives. J. Pharmacobiodyn., 1980, 3(9), 444-450.
[http://dx.doi.org/10.1248/bpb1978.3.444] [PMID: 7007613]
[82]
Munakata, K.; Mochida, H.; Kondo, S.; Suzuki, Y. Mutagenicity of N-acylglycinohydroxamic acids and related compounds. J. Pharmacobiodyn., 1980, 3(11), 557-561.
[http://dx.doi.org/10.1248/bpb1978.3.557] [PMID: 6787189]
[83]
Munakata, K.; Kobashi, K.; Takebe, S.; Hase, J. Therapy for urolithiasis by hydroxamic acids. III. Urease inhibitory potency and urinary excretion rate of N-acylglycinohydroxamic acids. J. Pharmacobiodyn., 1980, 3(9), 451-456.
[http://dx.doi.org/10.1248/bpb1978.3.451] [PMID: 7007614]
[84]
Kobashi, K.; Takebe, S.; Terashima, N.; Hase, J. Inhibition of urease activity by hydroxamic acid derivatives of amino acids. J. Biochem., 1975, 77(4), 837-843.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a130791] [PMID: 238968]
[85]
Odake, S.; Nakahashi, K.; Morikawa, T.; Takebe, S.; Kobashi, K. Inhibition of urease activity by dipeptidyl hydroxamic acids. Chem. Pharm. Bull. (Tokyo), 1992, 40(10), 2764-2768.
[http://dx.doi.org/10.1248/cpb.40.2764] [PMID: 1464106]
[86]
Abdullah, M.A.A.; Abuo-Rahma, G.E.D.A.A.; Abdelhafez, E.S.M.N.; Hassan, H.A.; Abd El-Baky, R.M. Design, synthesis, molecular docking, anti- Proteus mirabilis and urease inhibition of new fluoroquinolone carboxylic acid derivatives. Bioorg. Chem., 2017, 70, 1-11.
[http://dx.doi.org/10.1016/j.bioorg.2016.11.002] [PMID: 27908539]
[87]
Montecucco, C.; Rappuoli, R. Living dangerously: How Helicobacter pylori survives in the human stomach. Nat. Rev. Mol. Cell Biol., 2001, 2(6), 457-466.
[http://dx.doi.org/10.1038/35073084] [PMID: 11389469]
[88]
Cover, T.L.; Blaser, M.J. Helicobacter pylori in health and disease. Gastroenterology, 2009, 136(6), 1863-1873.
[http://dx.doi.org/10.1053/j.gastro.2009.01.073] [PMID: 19457415]
[89]
Odake, S.; Morikawa, T.; Tsuchiya, M.; Imamura, L.; Kobashi, K. Inhibition of Helicobacter pylori urease activity by hydroxamic acid derivatives. Biol. Pharm. Bull., 1994, 17(10), 1329-1332.
[http://dx.doi.org/10.1248/bpb.17.1329] [PMID: 7874052]
[90]
Muri, E.M.F.; Mishra, H.; Avery, M.A.; Williamson, J.S. Design and synthesis of heterocyclic hydroxamic acid derivatives as inhibitors of Helicobacter pylori urease. Synth. Commun., 2003, 33(12), 1977-1995.
[http://dx.doi.org/10.1081/SCC-120021024]
[91]
Muri, E.; Mishra, H.; Stein, S.; Williamson, J. Molecular modeling, synthesis and biological evaluation of heterocyclic hydroxamic acids designed as Helicobacter pylori urease inhibitors. Lett. Drug Des. Discov., 2004, 1(1), 30-34.
[http://dx.doi.org/10.2174/1570180043485680]
[92]
Xiao, Z.P.; Peng, Z.Y.; Dong, J.J.; Deng, R.C.; Wang, X.D.; Ouyang, H.; Yang, P.; He, J.; Wang, Y.F.; Zhu, M.; Peng, X.C.; Peng, W.X.; Zhu, H.L. Synthesis, molecular docking and kinetic properties of β-hydroxy-β-phenylpropionyl-hydroxamic acids as Helicobacter pylori urease inhibitors. Eur. J. Med. Chem., 2013, 68, 212-221.
[http://dx.doi.org/10.1016/j.ejmech.2013.07.047] [PMID: 23974021]
[93]
Ni, W.W.; Liu, Q.; Ren, S.Z.; Li, W.Y.; Yi, L.L.; Jing, H.; Sheng, L.X.; Wan, Q.; Zhong, P.F.; Fang, H.L.; Ouyang, H.; Xiao, Z.P.; Zhu, H.L. The synthesis and evaluation of phenoxyacylhydroxamic acids as potential agents for Helicobacter pylori infections. Bioorg. Med. Chem., 2018, 26(14), 4145-4152.
[http://dx.doi.org/10.1016/j.bmc.2018.07.003] [PMID: 29983280]
[94]
Shi, W.K.; Deng, R.C.; Wang, P.F.; Yue, Q.Q.; Liu, Q.; Ding, K.L.; Yang, M.H.; Zhang, H.Y.; Gong, S.H.; Deng, M.; Liu, W.R.; Feng, Q.J.; Xiao, Z.P.; Zhu, H.L. 3-Arylpropionylhydroxamic acid derivatives as Helicobacter pylori urease inhibitors: Synthesis, molecular docking and biological evaluation. Bioorg. Med. Chem., 2016, 24(19), 4519-4527.
[http://dx.doi.org/10.1016/j.bmc.2016.07.052] [PMID: 27492194]
[95]
Liu, Q.; Shi, W.K.; Ren, S.Z.; Ni, W.W.; Li, W.Y.; Chen, H.M.; Liu, P.; Yuan, J.; He, X.S.; Liu, J.J.; Cao, P.; Yang, P.Z.; Xiao, Z.P.; Zhu, H.L. Arylamino containing hydroxamic acids as potent urease inhibitors for the treatment of Helicobacter pylori infection. Eur. J. Med. Chem., 2018, 156, 126-136.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.065] [PMID: 30006158]
[96]
Mamidala, R.; Bhimathati, S.R.S.; Vema, A. Discovery of novel dihydropyrimidine and hydroxamic acid hybrids as potent Helicobacter pylori urease inhibitors. Bioorg. Chem., 2021, 114, 105010.
[http://dx.doi.org/10.1016/j.bioorg.2021.105010] [PMID: 34102519]
[97]
Song, W.Q.; Liu, M.L.; Yuan, L.C.; Li, S.Y.; Wang, Y.N.; Xiao, Z.P.; Zhu, H.L. Synthesis, evaluation and mechanism exploration of 2-(N-(3-nitrophenyl)-N-phenylsulfonyl)aminoacetohydroxamic acids as novel urease inhibitors. Bioorg. Med. Chem. Lett., 2022, 78, 129043.
[http://dx.doi.org/10.1016/j.bmcl.2022.129043] [PMID: 36332883]
[98]
Li, S.Y.; Zhang, Y.; Wang, Y.N.; Yuan, L.C.; Kong, C.C.; Xiao, Z.P.; Zhu, H.L. Identification of (N-aryl-N-arylsulfonyl)aminoacetohydroxamic acids as novel urease inhibitors and the mechanism exploration. Bioorg. Chem., 2023, 130, 106275.
[http://dx.doi.org/10.1016/j.bioorg.2022.106275] [PMID: 36410113]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy