Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Review Article

Envisioning Glucose Transporters (GLUTs and SGLTs) as Novel Intervention against Cancer: Drug Discovery Perspective and Targeting Approach

Author(s): Sadat Shafi, Mohammad Ahmed Khan, Javed Ahmad, Syed Arman Rabbani, Shailja Singh* and Abul Kalam Najmi*

Volume 26, Issue 2, 2025

Published on: 07 October, 2024

Page: [109 - 131] Pages: 23

DOI: 10.2174/0113894501335877240926101134

Price: $65

TIMBC 2025
Abstract

Metabolic reprogramming and altered cellular energetics have been recently established as an important cancer hallmark. The modulation of glucose metabolism is one of the important characteristic features of metabolic reprogramming in cancer. It contributes to oncogenic progression by supporting the increased biosynthetic and bio-energetic demands of tumor cells. This oncogenic transformation consequently results in elevated expression of glucose transporters in these cells. Moreover, various cancers exhibit abnormal transporter expression patterns compared to normal tissues. Recent investigations have underlined the significance of glucose transporters in regulating cancer cell survival, proliferation, and metastasis. Abnormal regulation of these transporters, which exhibit varying affinities for hexoses, could enable cancer cells to efficiently manage their energy supply, offering a crucial edge for proliferation. Exploiting the upregulated expression of glucose transporters, GLUTs, and Sodium Linked Glucose Transporters (SGLTs), could serve as a novel therapeutic intervention for anti-cancer drug discovery as well as provide a unique targeting approach for drug delivery to specific tumor tissues. This review aims to discussthe previous and emerging research on the expression of various types of glucose transporters in tumor tissues, the role of glucose transport inhibitors as a cancer therapy intervention as well as emerging GLUT/SGLT-mediated drug delivery strategies that can be therapeutically employed to target various cancers.

Keywords: Cancer, glucose metabolism, glucose transporters, glycoconjugation, metabolic reprogramming, nanoparticle, drug-delivery.

Next »
Graphical Abstract
[1]
Faubert B, Solmonson A, DeBerardinis RJ. Metabolic reprogramming and cancer progression. Science 2020; 368(6487): eaaw5473.
[http://dx.doi.org/10.1126/science.aaw5473] [PMID: 32273439]
[2]
Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer 2011; 11(2): 85-95.
[http://dx.doi.org/10.1038/nrc2981] [PMID: 21258394]
[3]
Kroemer G, Pouyssegur J. Tumor cell metabolism: Cancer’s Achilles’ heel. Cancer Cell 2008; 13(6): 472-82.
[http://dx.doi.org/10.1016/j.ccr.2008.05.005] [PMID: 18538731]
[4]
Schulze A, Harris AL. How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature 2012; 491(7424): 364-73.
[http://dx.doi.org/10.1038/nature11706] [PMID: 23151579]
[5]
Soga T. Cancer metabolism: Key players in metabolic reprogramming. Cancer Sci 2013; 104(3): 275-81.
[http://dx.doi.org/10.1111/cas.12085] [PMID: 23279446]
[6]
Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011; 144(5): 646-74.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[7]
Xiao Y, Ma D, Yang YS, et al. Comprehensive metabolomics expands precision medicine for triple-negative breast cancer. Cell Res 2022; 32(5): 477-90.
[http://dx.doi.org/10.1038/s41422-022-00614-0] [PMID: 35105939]
[8]
Tan Y, Li J, Zhao G, et al. Metabolic reprogramming from glycolysis to fatty acid uptake and beta-oxidation in platinum-resistant cancer cells. Nat Commun 2022; 13(1): 4554.
[http://dx.doi.org/10.1038/s41467-022-32101-w] [PMID: 35931676]
[9]
Chen Y, Li Y. Chapter Six - Metabolic reprogramming and immunity in cancer. In: Amiji MM, Milane LS, Eds. Cancer Immunology and Immunotherapy. Academic Press 2022; pp. 137-96.https://www.sciencedirect.com/science/article/pii/B9780128233979000065
[http://dx.doi.org/10.1016/B978-0-12-823397-9.00006-5]
[10]
Gyamfi J, Kim J, Choi J. Cancer as a metabolic disorder. Int J Mol Sci 2022; 23(3): 1155.
[http://dx.doi.org/10.3390/ijms23031155] [PMID: 35163079]
[11]
Schiliro C, Firestein BL. Mechanisms of metabolic reprogramming in cancer cells supporting enhanced growth and proliferation. Cells 2021; 10(5): 1056.
[http://dx.doi.org/10.3390/cells10051056] [PMID: 33946927]
[12]
Chen Z, Han F, Du Y, Shi H, Zhou W. Hypoxic microenvironment in cancer: Molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8(1): 70.
[http://dx.doi.org/10.1038/s41392-023-01332-8] [PMID: 36797231]
[13]
Nagarajan SR, Butler LM, Hoy AJ. The diversity and breadth of cancer cell fatty acid metabolism. Cancer Metab 2021; 9(1): 2.
[http://dx.doi.org/10.1186/s40170-020-00237-2] [PMID: 33413672]
[14]
Lin X, Xiao Z, Chen T, Liang SH, Guo H. Glucose metabolism on tumor plasticity, diagnosis, and treatment. Front Oncol 2020; 10: 317.https://www.frontiersin.org/articles/10.3389/fonc.2020.00317/full
[http://dx.doi.org/10.3389/fonc.2020.00317] [PMID: 32211335]
[15]
Yun J, Rago C, Cheong I, et al. Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 2009; 325(5947): 1555-9.
[http://dx.doi.org/10.1126/science.1174229] [PMID: 19661383]
[16]
Wei Z, Liu X, Cheng C, Yu W, Yi P. Metabolism of amino acids in cancer. Front Cell Dev Biol 2021; 8: 603837.
[http://dx.doi.org/10.3389/fcell.2020.603837] [PMID: 33511116]
[17]
DeBerardinis RJ, Chandel NS. Fundamentals of cancer metabolism. Sci Adv 2016; 2(5): e1600200.
[http://dx.doi.org/10.1126/sciadv.1600200] [PMID: 27386546]
[18]
Calvo MB, Figueroa A, Pulido EG, Campelo RG, Aparicio LA. Potential role of sugar transporters in cancer and their relationship with anticancer therapy. Int J Endocrinol 2010; 2010: 1-14.
[http://dx.doi.org/10.1155/2010/205357] [PMID: 20706540]
[19]
Ghanavat M, Shahrouzian M, Deris Zayeri Z, Banihashemi S, Kazemi SM, Saki N. Digging deeper through glucose metabolism and its regulators in cancer and metastasis. Life Sci 2021; 264: 118603.
[http://dx.doi.org/10.1016/j.lfs.2020.118603] [PMID: 33091446]
[20]
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 2009; 324(5930): 1029-33.
[http://dx.doi.org/10.1126/science.1160809] [PMID: 19460998]
[21]
Makowski L, Sundaram S, Johnson AR. Obesity, metabolism and the microenvironment: Links to cancer. J Carcinog 2013; 12(1): 19.
[http://dx.doi.org/10.4103/1477-3163.119606] [PMID: 24227994]
[22]
Fan K, Liu Z, Gao M, Tu K, Xu Q, Zhang Y. Targeting nutrient dependency in cancer treatment. Front Oncol 2022; 12: 820173.
[http://dx.doi.org/10.3389/fonc.2022.820173] [PMID: 35178349]
[23]
Garcia-Bermudez J, Williams RT, Guarecuco R, Birsoy K. Targeting extracellular nutrient dependencies of cancer cells. Mol Metab 2020; 33: 67-82.
[http://dx.doi.org/10.1016/j.molmet.2019.11.011] [PMID: 31926876]
[24]
Papalazarou V, Maddocks ODK. Supply and demand: Cellular nutrient uptake and exchange in cancer. Mol Cell 2021; 81(18): 3731-48.
[http://dx.doi.org/10.1016/j.molcel.2021.08.026] [PMID: 34547236]
[25]
Zhu J, Thompson CB. Metabolic regulation of cell growth and proliferation. Nat Rev Mol Cell Biol 2019; 20(7): 436-50.
[http://dx.doi.org/10.1038/s41580-019-0123-5] [PMID: 30976106]
[26]
Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol 1927; 8(6): 519-30.
[http://dx.doi.org/10.1085/jgp.8.6.519] [PMID: 19872213]
[27]
Som P, Atkins HL, Bandoypadhyay D, et al. A fluorinated glucose analog, 2-fluoro-2-deoxy-D-glucose (F-18): Nontoxic tracer for rapid tumor detection. J Nucl Med 1980; 21(7): 670-5.
[PMID: 7391842]
[28]
Adekola K, Rosen ST, Shanmugam M. Glucose transporters in cancer metabolism. Curr Opin Oncol 2012; 24(6): 650-4.
[http://dx.doi.org/10.1097/CCO.0b013e328356da72] [PMID: 22913968]
[29]
Thorens B, Mueckler M. Glucose transporters in the 21st Century. Am J Physiol Endocrinol Metab 2010; 298(2): E141-5.
[http://dx.doi.org/10.1152/ajpendo.00712.2009] [PMID: 20009031]
[30]
Joost HG, Thorens B. The extended GLUT-family of sugar/polyol transport facilitators: Nomenclature, sequence characteristics, and potential function of its novel members. Mol Membr Biol 2001; 18(4): 247-56.
[http://dx.doi.org/10.1080/09687680110090456] [PMID: 11780753]
[31]
Uldry M, Thorens B. The SLC2 family of facilitated hexose and polyol transporters. Pflugers Arch 2004; 447(5): 480-9.
[http://dx.doi.org/10.1007/s00424-003-1085-0] [PMID: 12750891]
[32]
Augustin R. The protein family of glucose transport facilitators: It’s not only about glucose after all. IUBMB Life 2010; 62(5): 315-33.
[http://dx.doi.org/10.1002/iub.315] [PMID: 20209635]
[33]
Pliszka M, Szablewski L. Glucose transporters as a target for anticancer therapy. Cancers 2021; 13(16): 4184.
[http://dx.doi.org/10.3390/cancers13164184] [PMID: 34439338]
[34]
Barron CC, Bilan PJ, Tsakiridis T, Tsiani E. Facilitative glucose transporters: Implications for cancer detection, prognosis and treatment. Metabolism 2016; 65(2): 124-39.
[http://dx.doi.org/10.1016/j.metabol.2015.10.007] [PMID: 26773935]
[35]
Medina RA, Owen G. Glucose transporters: Expression, regulation and cancer. Biol Res 2002; 35(1): 9-26.
[http://dx.doi.org/10.4067/S0716-97602002000100004] [PMID: 12125211]
[36]
Macheda ML, Rogers S, Best JD. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol 2005; 202(3): 654-62.
[http://dx.doi.org/10.1002/jcp.20166] [PMID: 15389572]
[37]
Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 2011; 11(5): 325-37.
[http://dx.doi.org/10.1038/nrc3038] [PMID: 21508971]
[38]
Krzeslak A, Wojcik-Krowiranda K, Forma E, et al. Expression of GLUT1 and GLUT3 glucose transporters in endometrial and breast cancers. Pathol Oncol Res 2012; 18(3): 721-8.
[http://dx.doi.org/10.1007/s12253-012-9500-5] [PMID: 22270867]
[39]
Uldry M, Ibberson M, Hosokawa M, Thorens B. GLUT2 is a high affinity glucosamine transporter. FEBS Lett 2002; 524(1-3): 199-203.
[http://dx.doi.org/10.1016/S0014-5793(02)03058-2] [PMID: 12135767]
[40]
Pragallapati S, Manyam R. Glucose transporter 1 in health and disease. J Oral Maxillofac Pathol 2019; 23(3): 443-9.
[http://dx.doi.org/10.4103/jomfp.JOMFP_22_18] [PMID: 31942129]
[41]
Zhao FQ, Keating A. Functional properties and genomics of glucose transporters. Curr Genomics 2007; 8(2): 113-28.
[http://dx.doi.org/10.2174/138920207780368187] [PMID: 18660845]
[42]
Takata K, Kasahara T, Kasahara M, Ezaki O, Hirano H. Erythrocyte/HEPG2-type glucose transporter is concentrated in cells of blood-tissue barriers. Biochem Biophys Res Commun 1990; 173(1): 67-73.
[http://dx.doi.org/10.1016/S0006-291X(05)81022-8] [PMID: 2256938]
[43]
Luo X-M, Zhou S-H, Fan J. Glucose transporter-1 as a new therapeutic target in laryngeal carcinoma. J Int Med Res 2010; 38(6): 1885-92.
[http://dx.doi.org/10.1177/147323001003800601] [PMID: 21226991]
[44]
Godoy A, Ulloa V, Rodríguez F, et al. Differential subcellular distribution of glucose transporters GLUT1–6 and GLUT9 in human cancer: Ultrastructural localization of GLUT1 and GLUT5 in breast tumor tissues. J Cell Physiol 2006; 207(3): 614-27.
[http://dx.doi.org/10.1002/jcp.20606] [PMID: 16523487]
[45]
Wang J, Ye C, Chen C, et al. Glucose transporter GLUT1 expression and clinical outcome in solid tumors: A systematic review and meta-analysis. Oncotarget 2017; 8(10): 16875-86.
[http://dx.doi.org/10.18632/oncotarget.15171] [PMID: 28187435]
[46]
Zhang B, Xie Z, Li B. The clinicopathologic impacts and prognostic significance of GLUT1 expression in patients with lung cancer: A meta-analysis. Gene 2019; 689: 76-83.
[http://dx.doi.org/10.1016/j.gene.2018.12.006] [PMID: 30552981]
[47]
Zhao H, Sun J, Shao J, et al. Glucose transporter 1 promotes the malignant phenotype of non-small cell lung cancer through integrin β1/Src/FAK signaling. J Cancer 2019; 10(20): 4989-97.
[http://dx.doi.org/10.7150/jca.30772] [PMID: 31598171]
[48]
Shen YM, Arbman G, Olsson B, Sun XF. Overexpression of GLUT1 in colorectal cancer is independently associated with poor prognosis. Int J Biol Markers 2011; 26(3): 166-72.
[http://dx.doi.org/10.5301/JBM.2011.8550] [PMID: 21786248]
[49]
Schlößer HA, Drebber U, Urbanski A, et al. Glucose transporters 1, 3, 6, and 10 are expressed in gastric cancer and glucose transporter 3 is associated with UICC stage and survival. Gastric Cancer 2017; 20(1): 83-91.
[http://dx.doi.org/10.1007/s10120-015-0577-x] [PMID: 26643879]
[50]
Baer SC, Casaubonb L, Younes M. Expression of the human erythrocyte glucose transporter Glut1 in cutaneous neoplasia. J Am Acad Dermatol 1997; 37(4): 575-7.
[http://dx.doi.org/10.1016/S0190-9622(97)70174-9] [PMID: 9344196]
[51]
Johnson JH, Newgard CB, Milburn JL, Lodish HF, Thorens B. The high Km glucose transporter of islets of Langerhans is functionally similar to the low affinity transporter of liver and has an identical primary sequence. J Biol Chem 1990; 265(12): 6548-51.
[http://dx.doi.org/10.1016/S0021-9258(19)39181-1] [PMID: 2182619]
[52]
Colville CA, Seatter MJ, Jess TJ, Gould GW, Thomas HM. Kinetic analysis of the liver-type (GLUT2) and brain-type (GLUT3) glucose transporters in Xenopus oocytes: Substrate specificities and effects of transport inhibitors. Biochem J 1993; 290(3): 701-6.
[http://dx.doi.org/10.1042/bj2900701] [PMID: 8457197]
[53]
Fukumoto H, Seino S, Imura H, et al. Sequence, tissue distribution, and chromosomal localization of mRNA encoding a human glucose transporter-like protein. Proc Natl Acad Sci USA 1988; 85(15): 5434-8.
[http://dx.doi.org/10.1073/pnas.85.15.5434] [PMID: 3399500]
[54]
Thorens B, Cheng ZQ, Brown D, Lodish HF. Liver glucose transporter: A basolateral protein in hepatocytes and intestine and kidney cells. Am J Physiol Cell Physiol 1990; 259(2): C279-85.
[http://dx.doi.org/10.1152/ajpcell.1990.259.2.C279] [PMID: 1701966]
[55]
Guillam MT, Dupraz P, Thorens B. Glucose uptake, utilization, and signaling in GLUT2-null islets. Diabetes 2000; 49(9): 1485-91.
[http://dx.doi.org/10.2337/diabetes.49.9.1485] [PMID: 10969832]
[56]
Thorens B. GLUT2, glucose sensing and glucose homeostasis. Diabetologia 2015; 58(2): 221-32.
[http://dx.doi.org/10.1007/s00125-014-3451-1] [PMID: 25421524]
[57]
Hamann I, Krys D, Glubrecht D, et al. Expression and function of hexose transporters GLUT1, GLUT2, and GLUT5 in breast cancer—effects of hypoxia. FASEB J 2018; 32(9): 5104-18.
[http://dx.doi.org/10.1096/fj.201800360R] [PMID: 29913554]
[58]
Aparicio LMA, Villaamil VM, Calvo MB, et al. Glucose transporter expression and the potential role of fructose in renal cell carcinoma: A correlation with pathological parameters. Mol Med Rep 2010; 3(4): 575-80.
[http://dx.doi.org/10.3892/mmr_00000300] [PMID: 21472282]
[59]
Tomita T. Immunocytochemical localization of glucose transporter-2 (GLUT-2) in pancreatic islets and islet cell tumors. Endocr Pathol 1999; 10(3): 213-21.
[http://dx.doi.org/10.1007/BF02738882] [PMID: 12114701]
[60]
Kim YH, Jeong DC, Pak K, et al. SLC2A2 (GLUT2) as a novel prognostic factor for hepatocellular carcinoma. Oncotarget 2017; 8(40): 68381-92.
[http://dx.doi.org/10.18632/oncotarget.20266] [PMID: 28978124]
[61]
Shang RZ, Qu SB, Wang DS. Reprogramming of glucose metabolism in hepatocellular carcinoma: Progress and prospects. World J Gastroenterol 2016; 22(45): 9933-43.
[http://dx.doi.org/10.3748/wjg.v22.i45.9933] [PMID: 28018100]
[62]
Grobholz R, Hacker HJ, Thorens B, Bannasch P. Reduction in the expression of glucose transporter protein GLUT 2 in preneoplastic and neoplastic hepatic lesions and reexpression of GLUT 1 in late stages of hepatocarcinogenesis. Cancer Res 1993; 53(18): 4204-11.
[PMID: 8364915]
[63]
Levi J, Cheng Z, Gheysens O, et al. Fluorescent fructose derivatives for imaging breast cancer cells. Bioconjug Chem 2007; 18(3): 628-34.
[http://dx.doi.org/10.1021/bc060184s] [PMID: 17444608]
[64]
Brown RS, Wahl RL. Overexpression of glut-1 glucose transporter in human breast cancer an immunohistochemical study. Cancer 1993; 72(10): 2979-85.
[http://dx.doi.org/10.1002/1097-0142(19931115)72:10<2979::AID-CNCR2820721020>3.0.CO;2-X] [PMID: 8221565]
[65]
Liu H, Huang D, McArthur DL, Boros LG, Nissen N, Heaney AP. Fructose induces transketolase flux to promote pancreatic cancer growth. Cancer Res 2010; 70(15): 6368-76.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-4615] [PMID: 20647326]
[66]
Seino Y, Yamamoto T, Inoue K, et al. Abnormal facilitative glucose transporter gene expression in human islet cell tumors. J Clin Endocrinol Metab 1993; 76(1): 75-8.
[PMID: 8421107]
[67]
Knaack D, Fiore DM, Surana M, et al. Clonal insulinoma cell line that stably maintains correct glucose responsiveness. Diabetes 1994; 43(12): 1413-7.
[http://dx.doi.org/10.2337/diab.43.12.1413] [PMID: 7958492]
[68]
Noguchi Y, Marat D, Saito A, et al. Expression of facilitative glucose transporters in gastric tumors. Hepatogastroenterology 1999; 46(28): 2683-9.
[PMID: 10522065]
[69]
Haber RS, Weinstein SP, O’Boyle E, Morgello S. Tissue distribution of the human GLUT3 glucose transporter. Endocrinology 1993; 132(6): 2538-43.
[http://dx.doi.org/10.1210/endo.132.6.8504756] [PMID: 8504756]
[70]
Maratou E, Dimitriadis G, Kollias A, et al. Glucose transporter expression on the plasma membrane of resting and activated white blood cells. Eur J Clin Invest 2007; 37(4): 282-90.
[http://dx.doi.org/10.1111/j.1365-2362.2007.01786.x] [PMID: 17373964]
[71]
Boado RJ, Black KL, Pardridge WM. Gene expression of GLUT3 and GLUT1 glucose transporters in human brain tumors. Brain Res Mol Brain Res 1994; 27(1): 51-7.
[http://dx.doi.org/10.1016/0169-328X(94)90183-X] [PMID: 7877454]
[72]
Younes M, Brown RW, Stephenson M, Gondo M, Cagle PT. Overexpression of glut1 and glut3 in stage I nonsmall cell lung carcinoma is Associated with poor survival. Cancer 1997; 80(6): 1046-51.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19970915)80:6<1046::AID-CNCR6>3.0.CO;2-7] [PMID: 9305704]
[73]
Suzawa N, Ito M, Qiao S, et al. Assessment of factors influencing FDG uptake in non-small cell lung cancer on PET/CT by investigating histological differences in expression of glucose transporters 1 and 3 and tumour size. Lung Cancer 2011; 72(2): 191-8.
[http://dx.doi.org/10.1016/j.lungcan.2010.08.017] [PMID: 20884076]
[74]
Suganuma N, Segade F, Matsuzu K, Bowden DW. Differential expression of facilitative glucose transporters in normal and tumour kidney tissues. BJU Int 2007; 99(5): 1143-9.
[http://dx.doi.org/10.1111/j.1464-410X.2007.06765.x] [PMID: 17437443]
[75]
de Geus-Oei LF, Krieken JHJM, Aliredjo RP, et al. Biological correlates of FDG uptake in non-small cell lung cancer. Lung Cancer 2007; 55(1): 79-87.
[http://dx.doi.org/10.1016/j.lungcan.2006.08.018] [PMID: 17046099]
[76]
Younes M, Lechago LV, Somoano JR, Mosharaf M, Lechago J. Immunohistochemical detection of Glut3 in human tumors and normal tissues. Anticancer Res 1997; 17(4A): 2747-50.
[PMID: 9252709]
[77]
Tsai TH, Yang CC, Kou TC, et al. Overexpression of GLUT3 promotes metastasis of triple-negative breast cancer by modulating the inflammatory tumor microenvironment. J Cell Physiol 2021; 236(6): 4669-80.
[http://dx.doi.org/10.1002/jcp.30189] [PMID: 33421130]
[78]
Kuo MH, Chang WW, Yeh BW, Chu YS, Lee YC, Lee HT. Glucose Transporter 3 Is Essential for the Survival of Breast Cancer Cells in the Brain. Cells 2019; 8(12): 1568.
[http://dx.doi.org/10.3390/cells8121568] [PMID: 31817208]
[79]
Dai W, Xu Y, Mo S, et al. GLUT3 induced by AMPK/CREB1 axis is key for withstanding energy stress and augments the efficacy of current colorectal cancer therapies. Signal Transduct Target Ther 2020; 5(1): 177.
[http://dx.doi.org/10.1038/s41392-020-00220-9] [PMID: 32873793]
[80]
Vaz CV, Marques R, Alves MG, et al. Androgens enhance the glycolytic metabolism and lactate export in prostate cancer cells by modulating the expression of GLUT1, GLUT3, PFK, LDH and MCT4 genes. J Cancer Res Clin Oncol 2016; 142(1): 5-16.
[http://dx.doi.org/10.1007/s00432-015-1992-4] [PMID: 26048031]
[81]
Starska K, Forma E, Jóźwiak P, et al. Gene and protein expression of glucose transporter 1 and glucose transporter 3 in human laryngeal cancer—the relationship with regulatory hypoxia-inducible factor-1α expression, tumor invasiveness, and patient prognosis. Tumour Biol 2015; 36(4): 2309-21.
[http://dx.doi.org/10.1007/s13277-014-2838-4] [PMID: 25412955]
[82]
Conde VR, Oliveira PF, Nunes AR, et al. The progression from a lower to a higher invasive stage of bladder cancer is associated with severe alterations in glucose and pyruvate metabolism. Exp Cell Res 2015; 335(1): 91-8.
[http://dx.doi.org/10.1016/j.yexcr.2015.04.007] [PMID: 25907297]
[83]
Reisser C, Eichhorn K, Herold-Mende C, Born AI, Bannasch P. Expression of facilitative glucose transport proteins during development of squamous cell carcinomas of the head and neck. Int J Cancer 1999; 80(2): 194-8.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19990118)80:2<194::AID-IJC6>3.0.CO;2-M] [PMID: 9935199]
[84]
Heydarzadeh S, Moshtaghie AA, Daneshpoor M, Hedayati M. Regulators of glucose uptake in thyroid cancer cell lines. Cell Commun Signal 2020; 18(1): 83.
[http://dx.doi.org/10.1186/s12964-020-00586-x] [PMID: 32493394]
[85]
Ayala FRR, Rocha RM, Carvalho KC, et al. GLUT1 and GLUT3 as potential prognostic markers for Oral Squamous Cell Carcinoma. Molecules 2010; 15(4): 2374-87.
[http://dx.doi.org/10.3390/molecules15042374] [PMID: 20428049]
[86]
Kasahara T, Kasahara M. Characterization of rat Glut4 glucose transporter expressed in the yeast Saccharomyces cerevisiae: Comparison with Glut1 glucose transporter. Biochim Biophys Acta Biomembr 1997; 1324(1): 111-9.
[http://dx.doi.org/10.1016/S0005-2736(96)00217-9] [PMID: 9059504]
[87]
Rumsey SC, Daruwala R, Al-Hasani H, Zarnowski MJ, Simpson IA, Levine M. Dehydroascorbic acid transport by GLUT4 in Xenopus oocytes and isolated rat adipocytes. J Biol Chem 2000; 275(36): 28246-53.
[http://dx.doi.org/10.1074/jbc.M000988200] [PMID: 10862609]
[88]
Matsuzu K, Segade F, Matsuzu U, Carter A, Bowden DW, Perrier ND. Differential expression of glucose transporters in normal and pathologic thyroid tissue. Thyroid 2004; 14(10): 806-12.
[http://dx.doi.org/10.1089/thy.2004.14.806] [PMID: 15588375]
[89]
Higashi T, Tamaki N, Honda T, et al. Expression of glucose transporters in human pancreatic tumors compared with increased FDG accumulation in PET study. J Nucl Med 1997; 38(9): 1337-44.
[PMID: 9293783]
[90]
McBrayer SK, Cheng JC, Singhal S, Krett NL, Rosen ST, Shanmugam M. Multiple myeloma exhibits novel dependence on GLUT4, GLUT8, and GLUT11: Implications for glucose transporter-directed therapy. Blood 2012; 119(20): 4686-97.
[http://dx.doi.org/10.1182/blood-2011-09-377846] [PMID: 22452979]
[91]
Burant CF, Takeda J, Brot-Laroche E, Bell GI, Davidson NO. Fructose transporter in human spermatozoa and small intestine is GLUT5. J Biol Chem 1992; 267(21): 14523-6.
[http://dx.doi.org/10.1016/S0021-9258(18)42067-4] [PMID: 1634504]
[92]
Rand EB, Depaoli AM, Davidson NO, Bell GI, Burant CF. Sequence, tissue distribution, and functional characterization of the rat fructose transporter GLUT5. Am J Physiol 1993; 264(6 Pt 1): G1169-76.
[PMID: 8333543]
[93]
Zwarts I, van Zutphen T, Kruit JK, et al. Identification of the fructose transporter GLUT5 (SLC2A5) as a novel target of nuclear receptor LXR. Sci Rep 2019; 9(1): 9299.
[http://dx.doi.org/10.1038/s41598-019-45803-x] [PMID: 31243309]
[94]
Mantych GJ, James DE, Devaskar SU. Jejunal/kidney glucose transporter isoform (Glut-5) is expressed in the human blood-brain barrier. Endocrinology 1993; 132(1): 35-40.
[http://dx.doi.org/10.1210/endo.132.1.8419132] [PMID: 8419132]
[95]
Cantley LC. Cancer, metabolism, fructose, artificial sweeteners, and going cold turkey on sugar. BMC Biol 2014; 12(1): 8.
[http://dx.doi.org/10.1186/1741-7007-12-8] [PMID: 24484968]
[96]
Nakagawa T, Lanaspa MA, Millan IS, et al. Fructose contributes to the Warburg effect for cancer growth. Cancer Metab 2020; 8(1): 16.
[http://dx.doi.org/10.1186/s40170-020-00222-9] [PMID: 32670573]
[97]
Weng Y, Fan X, Bai Y, et al. SLC2A5 promotes lung adenocarcinoma cell growth and metastasis by enhancing fructose utilization. Cell Death Discov 2018; 4(1): 38.
[http://dx.doi.org/10.1038/s41420-018-0038-5] [PMID: 29531835]
[98]
Reinicke K, Sotomayor P, Cisterna P, Delgado C, Nualart F, Godoy A. Cellular distribution of Glut-1 and Glut-5 in benign and malignant human prostate tissue. J Cell Biochem 2012; 113(2): 553-62.
[http://dx.doi.org/10.1002/jcb.23379] [PMID: 21938742]
[99]
Włodarczyk J, Włodarczyk M, Zielińska M, Jędrzejczak B, Dziki Ł, Fichna J. Blockade of fructose transporter protein GLUT5 inhibits proliferation of colon cancer cells: Proof of concept for a new class of anti-tumor therapeutics. Pharmacol Rep 2021; 73(3): 939-45.
[http://dx.doi.org/10.1007/s43440-021-00281-9] [PMID: 34052986]
[100]
Jin C, Gong X, Shang Y. GLUT5 increases fructose utilization in ovarian cancer. OncoTargets Ther 2019; 12: 5425-36.
[http://dx.doi.org/10.2147/OTT.S205522] [PMID: 31371983]
[101]
Zamora-León SP, Golde DW, Concha II, et al. Expression of the fructose transporter GLUT5 in human breast cancer. Proc Natl Acad Sci USA 1996; 93(5): 1847-52.
[http://dx.doi.org/10.1073/pnas.93.5.1847] [PMID: 8700847]
[102]
Jin X, Liang Y, Liu D, et al. An essential role for GLUT5-mediated fructose utilization in exacerbating the malignancy of clear cell renal cell carcinoma. Cell Biol Toxicol 2019; 35(5): 471-83.
[http://dx.doi.org/10.1007/s10565-019-09478-4] [PMID: 31102011]
[103]
Medina Villaamil V, Aparicio Gallego G, Valbuena Rubira L, et al. Fructose transporter Glut5 expression in clear renal cell carcinoma. Oncol Rep 2011; 25(2): 315-23.
[http://dx.doi.org/10.3892/or.2010.1096] [PMID: 21165569]
[104]
Gowrishankar G, Zitzmann-Kolbe S, Junutula A, et al. GLUT 5 is not over-expressed in breast cancer cells and patient breast cancer tissues. PLoS One 2011; 6(11): e26902.
[http://dx.doi.org/10.1371/journal.pone.0026902] [PMID: 22073218]
[105]
Li Q, Manolescu A, Ritzel M, et al. Cloning and functional characterization of the human GLUT7 isoform SLC2A7 from the small intestine. Am J Physiol Gastrointest Liver Physiol 2004; 287(1): G236-42.
[http://dx.doi.org/10.1152/ajpgi.00396.2003] [PMID: 15033637]
[106]
Doblado M, Moley KH. Facilitative glucose transporter 9, a unique hexose and urate transporter. Am J Physiol Endocrinol Metab 2009; 297(4): E831-5.
[http://dx.doi.org/10.1152/ajpendo.00296.2009] [PMID: 19797240]
[107]
Augustin R, Carayannopoulos MO, Dowd LO, Phay JE, Moley JF, Moley KH. Identification and characterization of human glucose transporter-like protein-9 (GLUT9): Alternative splicing alters trafficking. J Biol Chem 2004; 279(16): 16229-36.
[http://dx.doi.org/10.1074/jbc.M312226200] [PMID: 14739288]
[108]
Itahana Y, Han R, Barbier S, Lei Z, Rozen S, Itahana K. The uric acid transporter SLC2A9 is a direct target gene of the tumor suppressor p53 contributing to antioxidant defense. Oncogene 2015; 34(14): 1799-810.
[http://dx.doi.org/10.1038/onc.2014.119] [PMID: 24858040]
[109]
Szablewski L. Glucose transporters as markers of diagnosis and prognosis in cancer diseases. Oncol Rev 2022; 16(1): 561.
[http://dx.doi.org/10.4081/oncol.2022.561] [PMID: 35340885]
[110]
Wu X, Li W, Sharma V, Godzik A, Freeze HH. Cloning and characterization of glucose transporter 11, a novel sugar transporter that is alternatively spliced in various tissues. Mol Genet Metab 2002; 76(1): 37-45.
[http://dx.doi.org/10.1016/S1096-7192(02)00018-5] [PMID: 12175779]
[111]
Scheepers A, Schmidt S, Manolescu A, et al. Characterization of the human SLC2A11 (GLUT11) gene: Alternative promoter usage, function, expression, and subcellular distribution of three isoforms, and lack of mouse orthologue. Mol Membr Biol 2005; 22(4): 339-51.
[http://dx.doi.org/10.1080/09687860500166143] [PMID: 16154905]
[112]
Sasaki T, Minoshima S, Shiohama A, et al. Molecular cloning of a member of the facilitative glucose transporter gene family GLUT11 (SLC2A11) and identification of transcription variants. Biochem Biophys Res Commun 2001; 289(5): 1218-24.
[http://dx.doi.org/10.1006/bbrc.2001.6101] [PMID: 11741323]
[113]
Doege H, Bocianski A, Joost HG, Schürmann A. Activity and genomic organization of human glucose transporter 9 (GLUT9), a novel member of the family of sugar-transport facilitators predominantly expressed in brain and leucocytes. Biochem J 2000; 350(3): 771-6.
[http://dx.doi.org/10.1042/bj3500771] [PMID: 10970791]
[114]
Byrne FL, Poon IKH, Modesitt SC, et al. Metabolic vulnerabilities in endometrial cancer. Cancer Res 2014; 74(20): 5832-45.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0254] [PMID: 25205105]
[115]
Caruana BT, Byrne FL. The NF-κB signalling pathway regulates GLUT6 expression in endometrial cancer. Cell Signal 2020; 73: 109688.
[http://dx.doi.org/10.1016/j.cellsig.2020.109688] [PMID: 32512041]
[116]
Ibberson M, Uldry M, Thorens B. GLUTX1, a novel mammalian glucose transporter expressed in the central nervous system and insulin-sensitive tissues. J Biol Chem 2000; 275(7): 4607-12.
[http://dx.doi.org/10.1074/jbc.275.7.4607] [PMID: 10671487]
[117]
Gómez O, Ballester-Lurbe B, Poch E, Mesonero JE, Terrado J. Developmental regulation of glucose transporters GLUT3, GLUT4 and GLUT8 in the mouse cerebellar cortex. J Anat 2010; 217(5): 616-23.
[http://dx.doi.org/10.1111/j.1469-7580.2010.01291.x] [PMID: 20819112]
[118]
Na G, Eb K, As G, Rh W, Jg JUL, et al. GLUT1 and GLUT8 in endometrium and endometrial adenocarcinoma Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology, Inc 2006; 19(11)https://pubmed.ncbi.nlm.nih.gov/16892013/
[119]
Rogers S, Chandler JD, Clarke AL, Petrou S, Best JD. Glucose transporter GLUT12-functional characterization in Xenopus laevis oocytes. Biochem Biophys Res Commun 2003; 308(3): 422-6.
[http://dx.doi.org/10.1016/S0006-291X(03)01417-7] [PMID: 12914765]
[120]
Rogers S, Macheda ML, Docherty SE, et al. Identification of a novel glucose transporter-like protein—GLUT-12. Am J Physiol Endocrinol Metab 2002; 282(3): E733-8.
[http://dx.doi.org/10.1152/ajpendo.2002.282.3.E733] [PMID: 11832379]
[121]
Rogers S, Docherty SE, Slavin JL, Henderson MA, Best JD. Differential expression of GLUT12 in breast cancer and normal breast tissue. Cancer Lett 2003; 193(2): 225-33.
[http://dx.doi.org/10.1016/S0304-3835(03)00010-7] [PMID: 12706881]
[122]
Matsui C, Takatani-Nakase T, Maeda S, Nakase I, Takahashi K. Potential roles of GLUT12 for glucose sensing and cellular migration in MCF-7 human breast cancer cells under high glucose conditions. Anticancer Res 2017; 37(12): 6715-22.
[PMID: 29187448]
[123]
Shi Y, Zhang Y, Ran F, et al. Let-7a-5p inhibits triple-negative breast tumor growth and metastasis through GLUT12-mediated warburg effect. Cancer Lett 2020; 495: 53-65.
[http://dx.doi.org/10.1016/j.canlet.2020.09.012] [PMID: 32946964]
[124]
Chandler JD, Williams ED, Slavin JL, Best JD, Rogers S. Expression and localization of GLUT1 and GLUT12 in prostate carcinoma. Cancer 2003; 97(8): 2035-42.
[http://dx.doi.org/10.1002/cncr.11293] [PMID: 12673735]
[125]
White MA, Tsouko E, Lin C, et al. GLUT12 promotes prostate cancer cell growth and is regulated by androgens and CaMKK2 signaling. Endocr Relat Cancer 2018; 25(4): 453-69.
[http://dx.doi.org/10.1530/ERC-17-0051] [PMID: 29431615]
[126]
Pujol-Gimenez J, de Heredia FP, Idoate MA, Airley R, Lostao MP, Evans AR. Could GLUT12 be a potential therapeutic target in cancer treatment? A preliminary report. J Cancer 2015; 6(2): 139-43.
[http://dx.doi.org/10.7150/jca.10429] [PMID: 25561978]
[127]
Dawson PA, Mychaleckyj JC, Fossey SC, Mihic SJ, Craddock AL, Bowden DW. Sequence and functional analysis of GLUT10: A glucose transporter in the Type 2 diabetes-linked region of chromosome 20q12-13.1. Mol Genet Metab 2001; 74(1-2): 186-99.
[http://dx.doi.org/10.1006/mgme.2001.3212] [PMID: 11592815]
[128]
McVie-Wylie AJ, Lamson DR, Chen YT. Molecular cloning of a novel member of the GLUT family of transporters, SLC2a10 (GLUT10), localized on chromosome 20q13.1: A candidate gene for NIDDM susceptibility. Genomics 2001; 72(1): 113-7.
[http://dx.doi.org/10.1006/geno.2000.6457] [PMID: 11247674]
[129]
Uldry M, Ibberson M, Horisberger JD, Chatton JY, Riederer BM, Thorens B. Identification of a mammalian H+-myo-inositol symporter expressed predominantly in the brain. EMBO J 2001; 20(16): 4467-77.
[http://dx.doi.org/10.1093/emboj/20.16.4467] [PMID: 11500374]
[130]
Sano R, Shinozaki Y, Ohta T. Sodium–glucose cotransporters: Functional properties and pharmaceutical potential. J Diabetes Investig 2020; 11(4): 770-82.
[http://dx.doi.org/10.1111/jdi.13255] [PMID: 32196987]
[131]
Navale AM, Paranjape AN. Glucose transporters: physiological and pathological roles. Biophys Rev 2016; 8(1): 5-9.
[http://dx.doi.org/10.1007/s12551-015-0186-2] [PMID: 28510148]
[132]
Wright EM, Turk E. The sodium/glucose cotransport family SLC5. Pflugers Arch 2004; 447(5): 813-5.
[http://dx.doi.org/10.1007/s00424-003-1202-0] [PMID: 12748858]
[133]
Wright EM, Loo DDF, Hirayama BA. Biology of human sodium glucose transporters. Physiol Rev 2011; 91(2): 733-94.
[http://dx.doi.org/10.1152/physrev.00055.2009] [PMID: 21527736]
[134]
Nishimura M, Naito S. Tissue-specific mRNA expression profiles of human ATP-binding cassette and solute carrier transporter superfamilies. Drug Metab Pharmacokinet 2005; 20(6): 452-77.
[http://dx.doi.org/10.2133/dmpk.20.452] [PMID: 16415531]
[135]
Martín MG, Turk E, Lostao MP, Kerner C, Wright EM. Defects in Na+/glucose cotransporter (SGLT1) trafficking and function cause glucose-galactose malabsorption. Nat Genet 1996; 12(2): 216-20.
[http://dx.doi.org/10.1038/ng0296-216] [PMID: 8563765]
[136]
Lam JT, Martín MG, Turk E, et al. Missense mutations in SGLT1 cause glucose–galactose malabsorption by trafficking defects. Biochim Biophys Acta Mol Basis Dis 1999; 1453(2): 297-303.
[http://dx.doi.org/10.1016/S0925-4439(98)00109-4] [PMID: 10036327]
[137]
Ishikawa N, Oguri T, Isobe T, Fujitaka K, Kohno N. SGLT gene expression in primary lung cancers and their metastatic lesions. Jpn J Cancer Res 2001; 92(8): 874-9.
[http://dx.doi.org/10.1111/j.1349-7006.2001.tb01175.x] [PMID: 11509120]
[138]
Casneuf VF, Fonteyne P, Van Damme N, et al. Expression of SGLT1, Bcl-2 and p53 in primary pancreatic cancer related to survival. Cancer Invest 2008; 26(8): 852-9.
[http://dx.doi.org/10.1080/07357900801956363] [PMID: 18853313]
[139]
Helmke BM, Reisser C, Idzkoe M, Dyckhoff G, Herold-Mende C, Idzkoe M. Expression of SGLT-1 in preneoplastic and neoplastic lesions of the head and neck. Oral Oncol 2004; 40(1): 28-35.
[http://dx.doi.org/10.1016/S1368-8375(03)00129-5] [PMID: 14662412]
[140]
Hanabata Y, Nakajima Y, Morita K, Kayamori K, Omura K. Coexpression of SGLT1 and EGFR is associated with tumor differentiation in oral squamous cell carcinoma. Odontology 2012; 100(2): 156-63.
[http://dx.doi.org/10.1007/s10266-011-0033-2] [PMID: 21607591]
[141]
Guo GF, Cai YC, Zhang B, et al. Overexpression of SGLT1 and EGFR in colorectal cancer showing a correlation with the prognosis. Med Oncol 2011; 28(S1) (Suppl. 1): 197-203.
[http://dx.doi.org/10.1007/s12032-010-9696-8] [PMID: 21080109]
[142]
Lai B, Xiao Y, Pu H, Cao Q, Jing H, Liu X. Overexpression of SGLT1 is correlated with tumor development and poor prognosis of ovarian carcinoma. Arch Gynecol Obstet 2012; 285(5): 1455-61.
[http://dx.doi.org/10.1007/s00404-011-2166-5] [PMID: 22159627]
[143]
Liu H, Ertay A, Peng P, et al. SGLT1 is required for the survival of triple-negative breast cancer cells via potentiation of EGFR activity. Mol Oncol 2019; 13(9): 1874-86.
[http://dx.doi.org/10.1002/1878-0261.12530] [PMID: 31199048]
[144]
Weihua Z, Tsan R, Huang WC, et al. Survival of cancer cells is maintained by EGFR independent of its kinase activity. Cancer Cell 2008; 13(5): 385-93.
[http://dx.doi.org/10.1016/j.ccr.2008.03.015] [PMID: 18455122]
[145]
Du J, Gu J, Deng J, et al. The expression and survival significance of sodium glucose transporters in pancreatic cancer. BMC Cancer 2022; 22(1): 116.
[http://dx.doi.org/10.1186/s12885-021-09060-4] [PMID: 35090421]
[146]
Salker MS, Singh Y, Zeng N, et al. Loss of endometrial sodium glucose cotransporter SGLT1 is detrimental to embryo survival and fetal growth in pregnancy. Sci Rep 2017; 7(1): 12612.
[http://dx.doi.org/10.1038/s41598-017-11674-3] [PMID: 28974690]
[147]
Blessing A, Xu L, Gao G, Bollu LR, Ren J, Li H, et al. Sodium/glucose co-transporter 1 expression increases in human diseased prostate. J Cancer Sci Ther 2012; 4(9): 1-7.
[http://dx.doi.org/10.4172/1948-5956.1000159]
[148]
Shi M, Wang C, Ji J, et al. CRISPR/Cas9-mediated knockout of SGLT1 inhibits proliferation and alters metabolism of gastric cancer cells. Cell Signal 2022; 90: 110192.
[http://dx.doi.org/10.1016/j.cellsig.2021.110192] [PMID: 34774990]
[149]
Scafoglio C, Hirayama BA, Kepe V, et al. Functional expression of sodium-glucose transporters in cancer. Proc Natl Acad Sci USA 2015; 112(30): E4111-9.
[http://dx.doi.org/10.1073/pnas.1511698112] [PMID: 26170283]
[150]
Kaji K, Nishimura N, Seki K, et al. Sodium glucose cotransporter 2 inhibitor canagliflozin attenuates liver cancer cell growth and angiogenic activity by inhibiting glucose uptake. Int J Cancer 2018; 142(8): 1712-22.
[http://dx.doi.org/10.1002/ijc.31193] [PMID: 29205334]
[151]
Kuang H, Liao L, Chen H, Kang Q, Shu X, Wang Y. Therapeutic effect of sodium glucose co-transporter 2 inhibitor dapagliflozin on renal cell carcinoma. Med Sci Monit 2017; 23: 3737-45.
[http://dx.doi.org/10.12659/MSM.902530] [PMID: 28763435]
[152]
Komatsu S, Nomiyama T, Numata T, et al. SGLT2 inhibitor ipragliflozin attenuates breast cancer cell proliferation. Endocr J 2020; 67(1): 99-106.
[http://dx.doi.org/10.1507/endocrj.EJ19-0428] [PMID: 31776304]
[153]
Shoda K, Tsuji S, Nakamura S, et al. Canagliflozin inhibits glioblastoma growth and proliferation by activating AMPK. Cell Mol Neurobiol 2023; 43(2): 879-92.
[http://dx.doi.org/10.1007/s10571-022-01221-8] [PMID: 35435536]
[154]
Díez-Sampedro A, Hirayama BA, Osswald C, et al. A glucose sensor hiding in a family of transporters. Proc Natl Acad Sci USA 2003; 100(20): 11753-8.
[http://dx.doi.org/10.1073/pnas.1733027100] [PMID: 13130073]
[155]
Wright EM. Glucose transport families SLC5 and SLC50. Mol Aspects Med 2013; 34(2-3): 183-96.
[http://dx.doi.org/10.1016/j.mam.2012.11.002] [PMID: 23506865]
[156]
Chen J, Williams S, Ho S, et al. Quantitative PCR tissue expression profiling of the human SGLT2 gene and related family members. Diabetes Ther 2010; 1(2): 57-92.
[http://dx.doi.org/10.1007/s13300-010-0006-4] [PMID: 22127746]
[157]
Kothinti RK, Blodgett AB, North PE, Roman RJ, Tabatabai NM. A novel SGLT is expressed in the human kidney. Eur J Pharmacol 2012; 690(1-3): 77-83.
[http://dx.doi.org/10.1016/j.ejphar.2012.06.033] [PMID: 22766068]
[158]
Tazawa S, Yamato T, Fujikura H, et al. SLC5A9/SGLT4, a new Na+-dependent glucose transporter, is an essential transporter for mannose, 1,5-anhydro-D-glucitol, and fructose. Life Sci 2005; 76(9): 1039-50.
[http://dx.doi.org/10.1016/j.lfs.2004.10.016] [PMID: 15607332]
[159]
Gatto F, Ferreira R, Nielsen J. Pan-cancer analysis of the metabolic reaction network. Metab Eng 2020; 57: 51-62.
[http://dx.doi.org/10.1016/j.ymben.2019.09.006] [PMID: 31526853]
[160]
Fernandez-Rozadilla C, Cazier JB, Tomlinson IP, et al. A colorectal cancer genome-wide association study in a Spanish cohort identifies two variants associated with colorectal cancer risk at 1p33 and 8p12. BMC Genomics 2013; 14(1): 55.
[http://dx.doi.org/10.1186/1471-2164-14-55] [PMID: 23350875]
[161]
Port AM, Ruth MR, Istfan NW. Fructose consumption and cancer. Curr Opin Endocrinol Diabetes Obes 2012; 19(5): 367-74.
[http://dx.doi.org/10.1097/MED.0b013e328357f0cb] [PMID: 22922366]
[162]
Grempler R, Augustin R, Froehner S, et al. Functional characterisation of human SGLT-5 as a novel kidney-specific sodium-dependent sugar transporter. FEBS Lett 2012; 586(3): 248-53.
[http://dx.doi.org/10.1016/j.febslet.2011.12.027] [PMID: 22212718]
[163]
Fukuzawa T, Fukazawa M, Ueda O, et al. SGLT5 reabsorbs fructose in the kidney but its deficiency paradoxically exacerbates hepatic steatosis induced by fructose. PLoS One 2013; 8(2): e56681.
[http://dx.doi.org/10.1371/journal.pone.0056681] [PMID: 23451068]
[164]
Baader-Pagler T, Eckhardt M, Himmelsbach F, Sauer A, Stierstorfer BE, Hamilton BS. SGLT6 - A pharmacological target for the treatment of obesity? Adipocyte 2018; 7(4): 277-84.
[http://dx.doi.org/10.1080/21623945.2018.1516098] [PMID: 30161013]
[165]
Berry GT, Mallee JJ, Kwon HM, et al. The human osmoregulatory Na+/myo-inositol cotransporter gene (SLC5A3): Molecular cloning and localization to chromosome 21. Genomics 1995; 25(2): 507-13.
[http://dx.doi.org/10.1016/0888-7543(95)80052-N] [PMID: 7789985]
[166]
Dai Z, Chung SK, Miao D, Lau KS, Chan AWH, Kung AWC. Sodium/ myo -inositol cotransporter 1 and myo -inositol are essential for osteogenesis and bone formation. J Bone Miner Res 2011; 26(3): 582-90.
[http://dx.doi.org/10.1002/jbmr.240] [PMID: 20818642]
[167]
Vawter MP, Hamzeh AR, Muradyan E, Civelli O, Abbott GW, Alachkar A. Association of myoinositol transporters with schizophrenia and bipolar disorder: Evidence from human and animal studies. Mol Neuropsychiatry 2019; 5(4): 200-11.
[PMID: 31768373]
[168]
Cui Z, Mu C, Wu Z, et al. The sodium/myo-inositol co-transporter SLC5A3 promotes non-small cell lung cancer cell growth. Cell Death Dis 2022; 13(6): 569.
[http://dx.doi.org/10.1038/s41419-022-05017-y] [PMID: 35760803]
[169]
Ravera S, Reyna-Neyra A, Ferrandino G, Amzel LM, Carrasco N. The sodium/iodide symporter (NIS): Molecular physiology and preclinical and clinical applications. Annu Rev Physiol 2017; 79(1): 261-89.
[http://dx.doi.org/10.1146/annurev-physiol-022516-034125] [PMID: 28192058]
[170]
Spitzweg C, Joba W, Eisenmenger W, Heufelder AE. Analysis of human sodium iodide symporter gene expression in extrathyroidal tissues and cloning of its complementary deoxyribonucleic acids from salivary gland, mammary gland, and gastric mucosa. J Clin Endocrinol Metab 1998; 83(5): 1746-51.
[http://dx.doi.org/10.1210/jcem.83.5.4839] [PMID: 9589686]
[171]
Wapnir IL, van de Rijn M, Nowels K, et al. Immunohistochemical profile of the sodium/iodide symporter in thyroid, breast, and other carcinomas using high density tissue microarrays and conventional sections. J Clin Endocrinol Metab 2003; 88(4): 1880-8.
[http://dx.doi.org/10.1210/jc.2002-021544] [PMID: 12679487]
[172]
Zhang W, Liu Y, Chen X, Bergmeier SC. Novel inhibitors of basal glucose transport as potential anticancer agents. Bioorg Med Chem Lett 2010; 20(7): 2191-4.
[http://dx.doi.org/10.1016/j.bmcl.2010.02.027] [PMID: 20194024]
[173]
Temre MK, Kumar A, Singh SM. An appraisal of the current status of inhibition of glucose transporters as an emerging antineoplastic approach: Promising potential of new pan-GLUT inhibitors. Front Pharmacol 2022; 13: 1035510.
[http://dx.doi.org/10.3389/fphar.2022.1035510] [PMID: 36386187]
[174]
Gonzalez-Menendez P, Hevia D, Rodriguez-Garcia A, Mayo JC, Sainz RM. Regulation of GLUT transporters by flavonoids in androgen-sensitive and -insensitive prostate cancer cells. Endocrinology 2014; 155(9): 3238-50.
[http://dx.doi.org/10.1210/en.2014-1260] [PMID: 24932809]
[175]
Uifălean A, Schneider S, Gierok P, Ionescu C, Iuga C, Lalk M. The impact of soy isoflavones on MCF-7 and MDA-MB-231 breast cancer cells using a global metabolomic approach. Int J Mol Sci 2016; 17(9): 1443.
[http://dx.doi.org/10.3390/ijms17091443] [PMID: 27589739]
[176]
Melstrom LG, Salabat MR, Ding XZ, et al. Apigenin inhibits the GLUT-1 glucose transporter and the phosphoinositide 3-kinase/Akt pathway in human pancreatic cancer cells. Pancreas 2008; 37(4): 426-31.
[http://dx.doi.org/10.1097/MPA.0b013e3181735ccb] [PMID: 18953257]
[177]
Wood TE, Dalili S, Simpson CD, et al. A novel inhibitor of glucose uptake sensitizes cells to FAS-induced cell death. Mol Cancer Ther 2008; 7(11): 3546-55.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0569] [PMID: 19001437]
[178]
Zhan T, Digel M, Küch EM, Stremmel W, Füllekrug J. Silybin and dehydrosilybin decrease glucose uptake by inhibiting GLUT proteins. J Cell Biochem 2011; 112(3): 849-59.
[http://dx.doi.org/10.1002/jcb.22984] [PMID: 21328458]
[179]
Azevedo C, Correia-Branco A, Araújo JR, Guimarães JT, Keating E, Martel F. The chemopreventive effect of the dietary compound kaempferol on the MCF-7 human breast cancer cell line is dependent on inhibition of glucose cellular uptake. Nutr Cancer 2015; 67(3): 504-13.
[http://dx.doi.org/10.1080/01635581.2015.1002625] [PMID: 25719685]
[180]
Brockmueller A, Sameri S, Liskova A, et al. Resveratrol’s anti- cancer effects through the modulation of tumor glucose metabolism. Cancers (Basel) 2021; 13(2): 188.
[http://dx.doi.org/10.3390/cancers13020188] [PMID: 33430318]
[181]
Gunnink LK, Alabi OD, Kuiper BD, et al. Curcumin directly inhibits the transport activity of GLUT1. Biochimie 2016; 125: 179-85.
[http://dx.doi.org/10.1016/j.biochi.2016.03.014] [PMID: 27039889]
[182]
Moreira L, Araújo I, Costa T, et al. Quercetin and epigallocatechin gallate inhibit glucose uptake and metabolism by breast cancer cells by an estrogen receptor-independent mechanism. Exp Cell Res 2013; 319(12): 1784-95.
[http://dx.doi.org/10.1016/j.yexcr.2013.05.001] [PMID: 23664836]
[183]
Kobori M, Iwashita K, Shinmoto H, Tsushida T. Phloretin-induced apoptosis in B16 melanoma 4A5 cells and HL60 human leukemia cells. Biosci Biotechnol Biochem 1999; 63(4): 719-25.
[http://dx.doi.org/10.1271/bbb.63.719] [PMID: 10361685]
[184]
Park SY, Kim EJ, Shin HK, et al. Induction of apoptosis in HT-29 colon cancer cells by phloretin. J Med Food 2007; 10(4): 581-6.
[http://dx.doi.org/10.1089/jmf.2007.116] [PMID: 18158826]
[185]
Yang J, Jin X, Yan Y, et al. Inhibiting histone deacetylases suppresses glucose metabolism and hepatocellular carcinoma growth by restoring FBP1 expression. Sci Rep 2017; 7(1): 43864.
[http://dx.doi.org/10.1038/srep43864] [PMID: 28262837]
[186]
Wardell SE, Ilkayeva OR, Wieman HL, et al. Glucose metabolism as a target of histone deacetylase inhibitors. Mol Endocrinol 2009; 23(3): 388-401.
[http://dx.doi.org/10.1210/me.2008-0179] [PMID: 19106193]
[187]
Mishra RK, Wei C, Hresko RC, et al. in silico modeling-based identification of glucose transporter 4 (GLUT4)-selective inhibitors for cancer therapy. J Biol Chem 2015; 290(23): 14441-53.
[http://dx.doi.org/10.1074/jbc.M114.628826] [PMID: 25847249]
[188]
Cheng JC, McBrayer SK, Coarfa C, et al. Expression and phosphorylation of the AS160_v2 splice variant supports GLUT4 activation and the Warburg effect in multiple myeloma. Cancer Metab 2013; 1(1): 14.
[http://dx.doi.org/10.1186/2049-3002-1-14] [PMID: 24280290]
[189]
Dalva-Aydemir S, Bajpai R, Martinez M, et al. Targeting the metabolic plasticity of multiple myeloma with FDA-approved ritonavir and metformin. Clin Cancer Res 2015; 21(5): 1161-71.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-1088] [PMID: 25542900]
[190]
Chan DA, Sutphin PD, Nguyen P, et al. Targeting GLUT1 and the Warburg effect in renal cell carcinoma by chemical synthetic lethality. Sci Transl Med 2011; 3(94): 94ra70.
[http://dx.doi.org/10.1126/scitranslmed.3002394] [PMID: 21813754]
[191]
Liu Y, Zhang W, Cao Y, Liu Y, Bergmeier S, Chen X. Small compound inhibitors of basal glucose transport inhibit cell proliferation and induce apoptosis in cancer cells via glucose-deprivation- like mechanisms. Cancer Lett 2010; 298(2): 176-85.
[http://dx.doi.org/10.1016/j.canlet.2010.07.002] [PMID: 20678861]
[192]
Young CD, Lewis AS, Rudolph MC, et al. Modulation of glucose transporter 1 (GLUT1) expression levels alters mouse mammary tumor cell growth in vitro and in vivo. PLoS One 2011; 6(8): e23205.
[http://dx.doi.org/10.1371/journal.pone.0023205] [PMID: 21826239]
[193]
Rastogi S, Banerjee S, Chellappan S, Simon GR. Glut-1 antibodies induce growth arrest and apoptosis in human cancer cell lines. Cancer Lett 2007; 257(2): 244-51.
[http://dx.doi.org/10.1016/j.canlet.2007.07.021] [PMID: 17910902]
[194]
Ms SV, Pothabathula SV. Onco-Immunoinformatics: Homology Modeling, Molecular Docking of Monoclonal Antibodies with Their Receptors and Chemoinformatics of Novel Drug Design of Anti-Glut Drug Compound Conjugated Monoclonal Antibodies as a Novel Drug Discovery Approach Rochester, NY 2020.https://papers.ssrn.com/abstract=3530963
[195]
Chan KK, Chan JYW, Chung KKW, Fung KP. Inhibition of cell proliferation in human breast tumor cells by antisense oligonucleotides against facilitative glucose transporter 5. J Cell Biochem 2004; 93(6): 1134-42.
[http://dx.doi.org/10.1002/jcb.20270] [PMID: 15449313]
[196]
Liu TQ, Fan J, Zhou L, Zheng SS. Effects of suppressing glucose transporter-1 by an antisense oligodeoxynucleotide on the growth of human hepatocellular carcinoma cells. Hepatobiliary Pancreat Dis Int 2011; 10(1): 72-7.
[http://dx.doi.org/10.1016/S1499-3872(11)60010-6] [PMID: 21269938]
[197]
Fei X, Qi M, Wu B, Song Y, Wang Y, Li T. MicroRNA-195-5p suppresses glucose uptake and proliferation of human bladder cancer T24 cells by regulating GLUT3 expression. FEBS Lett 2012; 586(4): 392-7.
[http://dx.doi.org/10.1016/j.febslet.2012.01.006] [PMID: 22265971]
[198]
Watanabe M, Abe N, Oshikiri Y, Stanbridge EJ, Kitagawa T. Selective growth inhibition by glycogen synthase kinase-3 inhibitors in tumorigenic HeLa hybrid cells is mediated through NF-κB-dependent GLUT3 expression. Oncogenesis 2012; 1(7): e21.
[http://dx.doi.org/10.1038/oncsis.2012.21] [PMID: 23552737]
[199]
Zhou R, Vander Heiden MG, Rudin CM. Genotoxic exposure is associated with alterations in glucose uptake and metabolism. Cancer Res 2002; 62(12): 3515-20.
[PMID: 12067998]
[200]
Roos WP, Kaina B. DNA damage-induced cell death by apoptosis. Trends Mol Med 2006; 12(9): 440-50.
[http://dx.doi.org/10.1016/j.molmed.2006.07.007] [PMID: 16899408]
[201]
Wright EM. SGLT2 and cancer. Pflugers Arch 2020; 472(9): 1407-14.
[http://dx.doi.org/10.1007/s00424-020-02448-4] [PMID: 32820343]
[202]
Basak D, Gamez D, Deb S. SGLT2 inhibitors as potential anticancer agents. Biomedicines 2023; 11(7): 1867.
[http://dx.doi.org/10.3390/biomedicines11071867] [PMID: 37509506]
[203]
Hsia DS, Grove O, Cefalu WT. An update on SGLT2 inhibitors for the treatment of diabetes mellitus. Curr Opin Endocrinol Diabetes Obes 2017; 24(1): 73-9.
[http://dx.doi.org/10.1097/MED.0000000000000311] [PMID: 27898586]
[204]
Fonseca-Correa JI, Correa-Rotter R. Sodium-glucose cotransporter 2 inhibitors mechanisms of action: A review. Front Med (Lausanne) 2021; 8: 777861.
[http://dx.doi.org/10.3389/fmed.2021.777861] [PMID: 34988095]
[205]
Ali A, Mekhaeil B, Biziotis OD, et al. The SGLT2 inhibitor canagliflozin suppresses growth and enhances prostate cancer response to radiotherapy. Commun Biol 2023; 6(1): 919.
[http://dx.doi.org/10.1038/s42003-023-05289-w] [PMID: 37684337]
[206]
Papadopoli D, Uchenunu O, Palia R, et al. Perturbations of cancer cell metabolism by the antidiabetic drug canagliflozin. Neoplasia 2021; 23(4): 391-9.
[http://dx.doi.org/10.1016/j.neo.2021.02.003] [PMID: 33784591]
[207]
Molejon MI, Weiz G, Breccia JD, Vaccaro MI. Glycoconjugation: An approach to cancer therapeutics. World J Clin Oncol 2020; 11(3): 110-20.
[http://dx.doi.org/10.5306/wjco.v11.i3.110] [PMID: 32257842]
[208]
Calvaresi EC, Hergenrother PJ. Glucose conjugation for the specific targeting and treatment of cancer. Chem Sci 2013; 4(6): 2319-33.
[http://dx.doi.org/10.1039/c3sc22205e] [PMID: 24077675]
[209]
Pohl J, Bertram B, Hilgard P, Nowrousian MR, Stüben J, Wießler M. D-19575—a sugar-linked isophosphoramide mustard derivative exploiting transmembrane glucose transport. Cancer Chemother Pharmacol 1995; 35(5): 364-70.
[http://dx.doi.org/10.1007/s002800050248] [PMID: 7850916]
[210]
Shimizu T, Okamoto I, Tamura K, et al. Phase I clinical and pharmacokinetic study of the glucose-conjugated cytotoxic agent d-19575 (glufosfamide) in patients with solid tumors. Cancer Chemother Pharmacol 2010; 65(2): 243-50.
[http://dx.doi.org/10.1007/s00280-009-1028-3] [PMID: 19479254]
[211]
Briasoulis E, Judson I, Pavlidis N, et al. Phase I trial of 6-hour infusion of glufosfamide, a new alkylating agent with potentially enhanced selectivity for tumors that overexpress transmembrane glucose transporters: A study of the European Organization for Research and Treatment of Cancer Early Clinical Studies Group. J Clin Oncol 2000; 18(20): 3535-44.
[http://dx.doi.org/10.1200/JCO.2000.18.20.3535] [PMID: 11032596]
[212]
Ciuleanu TE, Pavlovsky AV, Bodoky G, et al. A randomised Phase III trial of glufosfamide compared with best supportive care in metastatic pancreatic adenocarcinoma previously treated with gemcitabine. Eur J Cancer 2009; 45(9): 1589-96.
[http://dx.doi.org/10.1016/j.ejca.2008.12.022] [PMID: 19188061]
[213]
Halmos T, Santarromana M, Antonakis K, Scherman D. Synthesis of glucose-chlorambucil derivatives and their recognition by the human GLUT1 glucose transporter. Eur J Pharmacol 1996; 318(2-3): 477-84.
[http://dx.doi.org/10.1016/S0014-2999(96)00796-0] [PMID: 9016941]
[214]
Halmos T, Santarromana M, Antonakis K, Scherman D. Synthesis of O-methylsulfonyl derivatives of d-glucose as potential alkylating agents for targeted drug delivery to the brain. Evaluation of their interaction with the human erythrocyte GLUT1 hexose transporter. Carbohydr Res 1997; 299(1-2): 15-21.
[http://dx.doi.org/10.1016/S0008-6215(96)00328-X] [PMID: 9129293]
[215]
Mandai T, Okumoto H, Oshitari T, et al. Synthesis and biological evaluation of water soluble taxoids bearing sugar moieties. Heterocycles 2001; 54(2): 561.
[http://dx.doi.org/10.3987/COM-00-S(I)34]
[216]
Mikuni K, Nakanishi K, Hara K, et al. in vivo antitumor activity of novel water-soluble taxoids. Biol Pharm Bull 2008; 31(6): 1155-8.
[http://dx.doi.org/10.1248/bpb.31.1155] [PMID: 18520047]
[217]
Lin YS, Tungpradit R, Sinchaikul S, et al. Targeting the delivery of glycan-based paclitaxel prodrugs to cancer cells via glucose transporters. J Med Chem 2008; 51(23): 7428-41.
[http://dx.doi.org/10.1021/jm8006257] [PMID: 19053781]
[218]
Liu R, Fu Z, Zhao M, et al. GLUT1-mediated selective tumor targeting with fluorine containing platinum(II) glycoconjugates. Oncotarget 2017; 8(24): 39476-96.
[http://dx.doi.org/10.18632/oncotarget.17073] [PMID: 28467806]
[219]
Cao J, Cui S, Li S, et al. Targeted cancer therapy with a 2-deoxyglucose-based adriamycin complex. Cancer Res 2013; 73(4): 1362-73.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2072] [PMID: 23396585]
[220]
Mundekkad D, Cho WC. Nanoparticles in clinical translation for cancer therapy. Int J Mol Sci 2022; 23(3): 1685.
[http://dx.doi.org/10.3390/ijms23031685] [PMID: 35163607]
[221]
Chehelgerdi M, Chehelgerdi M, Allela OQB, et al. Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation. Mol Cancer 2023; 22(1): 169.
[http://dx.doi.org/10.1186/s12943-023-01865-0] [PMID: 37814270]
[222]
Jiang X, Xin H, Ren Q, et al. Nanoparticles of 2-deoxy-d-glucose functionalized poly(ethylene glycol)-co-poly(trimethylene carbonate) for dual-targeted drug delivery in glioma treatment. Biomaterials 2014; 35(1): 518-29.
[http://dx.doi.org/10.1016/j.biomaterials.2013.09.094] [PMID: 24125772]
[223]
Jiang X, Xin H, Gu J, et al. Enhanced antitumor efficacy by d-glucosamine-functionalized and paclitaxel-loaded poly(ethylene glycol)-co-poly(trimethylene carbonate) polymer nanoparticles. J Pharm Sci 2014; 103(5): 1487-96.
[http://dx.doi.org/10.1002/jps.23928] [PMID: 24619482]
[224]
Hanahan D, Coussens LM. Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell 2012; 21(3): 309-22.
[http://dx.doi.org/10.1016/j.ccr.2012.02.022] [PMID: 22439926]
[225]
Lyssiotis CA, Kimmelman AC. Metabolic interactions in the tumor microenvironment. Trends Cell Biol 2017; 27(11): 863-75.
[http://dx.doi.org/10.1016/j.tcb.2017.06.003] [PMID: 28734735]
[226]
Shi R, Tang Y, Miao H. Metabolism in tumor microenvironment: Implications for cancer immunotherapy Med Comm 2020; 1(1): 47-68.
[227]
de la Cruz-López KG, Castro-Muñoz LJ, Reyes-Hernández DO, García-Carrancá A, Manzo-Merino J. Lactate in the regulation of tumor microenvironment and therapeutic approaches. Front Oncol 2019; 9: 1143.
[http://dx.doi.org/10.3389/fonc.2019.01143] [PMID: 31737570]
[228]
Xing Y, Zhao S, Zhou BP, Mi J. Metabolic reprogramming of the tumour microenvironment. FEBS J 2015; 282(20): 3892-8.
[http://dx.doi.org/10.1111/febs.13402] [PMID: 26255648]
[229]
Zhang C, Fei Y, Wang H, et al. CAFs orchestrates tumor immune microenvironment—A new target in cancer therapy? Front Pharmacol 2023; 14: 1113378.
[http://dx.doi.org/10.3389/fphar.2023.1113378] [PMID: 37007004]
[230]
Ping Q, Yan R, Cheng X, et al. Cancer-associated fibroblasts: Overview, progress, challenges, and directions. Cancer Gene Ther 2021; 28(9): 984-99.
[http://dx.doi.org/10.1038/s41417-021-00318-4] [PMID: 33712707]
[231]
Karta J, Bossicard Y, Kotzamanis K, Dolznig H, Letellier E. Mapping the metabolic networks of tumor cells and cancer-associated fibroblasts. Cells 2021; 10(2): 304.
[http://dx.doi.org/10.3390/cells10020304] [PMID: 33540679]
[232]
Kogure A, Naito Y, Yamamoto Y, et al. Cancer cells with high-metastatic potential promote a glycolytic shift in activated fibroblasts. PLoS One 2020; 15(6): e0234613.
[http://dx.doi.org/10.1371/journal.pone.0234613] [PMID: 32555715]
[233]
Chiarugi P, Cirri P. Metabolic exchanges within tumor microenvironment. Cancer Lett 2016; 380(1): 272-80.
[http://dx.doi.org/10.1016/j.canlet.2015.10.027] [PMID: 26546872]
[234]
Fiaschi T, Marini A, Giannoni E, et al. Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay. Cancer Res 2012; 72(19): 5130-40.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-1949] [PMID: 22850421]
[235]
Shim H, Dolde C, Lewis BC, et al. c-Myc transactivation of LDH-A : Implications for tumor metabolism and growth. Proc Natl Acad Sci USA 1997; 94(13): 6658-63.
[http://dx.doi.org/10.1073/pnas.94.13.6658] [PMID: 9192621]
[236]
Peppicelli S, Bianchini F, Calorini L. Extracellular acidity, a “reappreciated” trait of tumor environment driving malignancy: Perspectives in diagnosis and therapy. Cancer Metastasis Rev 2014; 33(2-3): 823-32.
[http://dx.doi.org/10.1007/s10555-014-9506-4] [PMID: 24984804]
[237]
Whitaker-Menezes D, Martinez-Outschoorn UE, Lin Z, et al. Evidence for a stromal-epithelial “lactate shuttle” in human tumors. Cell Cycle 2011; 10(11): 1772-83.
[http://dx.doi.org/10.4161/cc.10.11.15659] [PMID: 21558814]
[238]
Patel BB, Ackerstaff E, Serganova IS, et al. Tumor stroma interaction is mediated by monocarboxylate metabolism. Exp Cell Res 2017; 352(1): 20-33.
[http://dx.doi.org/10.1016/j.yexcr.2017.01.013] [PMID: 28132882]
[239]
Broz MT, Ko EY, Ishaya K, et al. Metabolic targeting of cancer associated fibroblasts overcomes T-cell exclusion and chemoresistance in soft-tissue sarcomas. Nat Commun 2024; 15(1): 2498.
[http://dx.doi.org/10.1038/s41467-024-46504-4] [PMID: 38509063]
[240]
Crezee T, Rabold K, de Jong L, Jaeger M, Netea-Maier RT. Metabolic programming of tumor associated macrophages in the context of cancer treatment. Ann Transl Med 2020; 8(16): 1028-8.
[http://dx.doi.org/10.21037/atm-20-1114] [PMID: 32953828]
[241]
Vitale I, Manic G, Coussens LM, Kroemer G, Galluzzi L. Macrophages and metabolism in the tumor microenvironment. Cell Metab 2019; 30(1): 36-50.
[http://dx.doi.org/10.1016/j.cmet.2019.06.001] [PMID: 31269428]
[242]
Mills C. M1 and M2 macrophages: Oracles of health and disease. Crit Rev Immunol 2012; 32(6): 463-88.
[http://dx.doi.org/10.1615/CritRevImmunol.v32.i6.10] [PMID: 23428224]
[243]
Khan SU, Khan MU, Azhar Ud Din M, et al. Reprogramming tumor-associated macrophages as a unique approach to target tumor immunotherapy. Front Immunol 2023; 14: 1166487.
[http://dx.doi.org/10.3389/fimmu.2023.1166487] [PMID: 37138860]
[244]
Rabold K, Netea MG, Adema GJ, Netea-Maier RT. Cellular metabolism of tumor-associated macrophages – functional impact and consequences. FEBS Lett 2017; 591(19): 3022-41.
[http://dx.doi.org/10.1002/1873-3468.12771] [PMID: 28771701]
[245]
Netea-Maier RT, Smit JWA, Netea MG. Metabolic changes in tumor cells and tumor-associated macrophages: A mutual relationship. Cancer Lett 2018; 413: 102-9.
[http://dx.doi.org/10.1016/j.canlet.2017.10.037] [PMID: 29111350]
[246]
Penny HL, Sieow JL, Adriani G, et al. Warburg metabolism in tumor-conditioned macrophages promotes metastasis in human pancreatic ductal adenocarcinoma. OncoImmunology 2016; 5(8): e1191731.
[http://dx.doi.org/10.1080/2162402X.2016.1191731] [PMID: 27622062]
[247]
Liu D, Chang C, Lu N, et al. Comprehensive proteomics analysis reveals metabolic reprogramming of tumor-associated macrophages stimulated by the tumor microenvironment. J Proteome Res 2017; 16(1): 288-97.
[http://dx.doi.org/10.1021/acs.jproteome.6b00604] [PMID: 27809537]
[248]
Cao J, Zeng F, Liao S, Cao L, Zhou Y. Effects of glycolysis on the polarization and function of tumor-associated macrophages (Review). Int J Oncol 2023; 62(6): 70.
[http://dx.doi.org/10.3892/ijo.2023.5518] [PMID: 37144503]
[249]
Yu Y, Liang Y, Li D, et al. Glucose metabolism involved in PD-L1-mediated immune escape in the malignant kidney tumour microenvironment. Cell Death Discov 2021; 7(1): 15.
[http://dx.doi.org/10.1038/s41420-021-00401-7] [PMID: 33462221]
[250]
McCarty MF, Whitaker J. Manipulating tumor acidification as a cancer treatment strategy. Altern Med Rev 2010; 15(3): 264-72.
[PMID: 21155627]
[251]
Ma G, Li C, Zhang Z, et al. Targeted glucose or glutamine metabolic therapy combined with PD-1/PD-L1 checkpoint blockade immunotherapy for the treatment of tumors - Mechanisms and strategies. Front Oncol 2021; 11: 697894.
[http://dx.doi.org/10.3389/fonc.2021.697894] [PMID: 34327138]
[252]
Palsson-McDermott EM, Dyck L, Zasłona Z, et al. Pyruvate kinase M2 is required for the expression of the immune checkpoint PD-L1 in immune cells and tumors. Front Immunol 2017; 8: 1300.https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2017.01300/full
[http://dx.doi.org/10.3389/fimmu.2017.01300] [PMID: 29081778]
[253]
DeWaal D, Nogueira V, Terry AR, et al. Hexokinase-2 depletion inhibits glycolysis and induces oxidative phosphorylation in hepatocellular carcinoma and sensitizes to metformin. Nat Commun 2018; 9(1): 446.
[http://dx.doi.org/10.1038/s41467-017-02733-4] [PMID: 29386513]
[254]
Brooke DG, van Dam EM, Watts CKW, et al. Targeting the Warburg Effect in cancer; relationships for 2-arylpyridazinones as inhibitors of the key glycolytic enzyme 6-phosphofructo-2-kinase/2,6-bisphosphatase 3 (PFKFB3). Bioorg Med Chem 2014; 22(3): 1029-39.
[http://dx.doi.org/10.1016/j.bmc.2013.12.041] [PMID: 24398380]
[255]
Bader JE, Voss K, Rathmell JC. Targeting Metabolism to Improve the Tumor Microenvironment for Cancer Immunotherapy. Mol Cell 2020; 78(6): 1019-33.
[http://dx.doi.org/10.1016/j.molcel.2020.05.034] [PMID: 32559423]
[256]
Zou W, Wolchok JD, Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Sci Transl Med 2016; 8(328): 328rv4.
[http://dx.doi.org/10.1126/scitranslmed.aad7118] [PMID: 26936508]
[257]
Cho S, Kim W, Yoo D, et al. Impact of glucose metabolism on PD-L1 expression in sorafenib-resistant hepatocellular carcinoma cells. Sci Rep 2024; 14(1): 1751.
[http://dx.doi.org/10.1038/s41598-024-52160-x] [PMID: 38243049]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy