Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Bcr-Abl Inhibitory Activities of Imatinib Derivatives

Author(s): Bao-Long Hou*, Jiaxu Yan, Rongrong Liu, Longquan Lv, Ruirui Feng, Xiumei Yang, Guanlin Guo and Cuiling Wang*

Volume 21, Issue 17, 2024

Published on: 01 October, 2024

Page: [4085 - 4094] Pages: 10

DOI: 10.2174/0115701808308483240918115915

Price: $65

Abstract

Background: Imatinib, a frontline targeted-therapeutic agent for patients with chronic myelogenous leukemia (CML), was a synthetic tyrosine kinase inhibitor approved by the US Food and Drug Administration.

Objective: To expand the structural diversity of Bcr-Abl inhibitors, we synthesized nine novel imatinib analogues (1a-1i) and evaluated their cytostatic effects against human cancer cell lines in vitro.

Methods: Imatinib and its analogues were successfully synthesized by an improved method in six main steps. Inhibitory activities of all compounds were evaluated on K562, HL-60, MCF-7, A549 and PBMC in vitro. Then, the effect of the most active compound was studied using flow cytometer, real-time qPCR and western blot experiments to determine its mechanism action. Finally, the molecular docking of the most active compound were determined.

Results: The IC50 of one imatinib analogue (compound 1h) for K562 and HL-60 was lower than imatinib itself. Further studies indicate that the pro-apoptotic effect of compound 1h on K562 cells was stronger than imatinib over a range of concentrations. Importantly, the real-time qPCR and western blot experiments showed that compound 1h was superior to imatinib in inhibiting Bcr-Abl expression. The structure-activity relationship was analyzed by determining the inhibitory rate of each imatinib analogue. Introducing benzene (A ring) and piperidine (E ring) rings instead of pyridine (A ring) and piperazine (E ring) in imatinib significantly enhanced the potency of imatinib against K562 and HL-60 cell lines, which is consistent with the docking results.

Conclusion: Imatinib analogue 1h showed a better inhibitory effect on leukemia cell lines than other cell lines, which was consistent with the imatinib-like structure, moreover, had little effect on PBMC. Overall, we conclude that compound 1h has the potential to treat chronic myeloid leukemia.

Keywords: Imatinib, apoptosis, chronic myelogenous leukemia, Bcr-Abl, molecular docking, structure-activity relationship.

Graphical Abstract
[1]
Szebeni, G.; Balog, J.; Demjén, A.; Alföldi, R.; Végi, V.; Fehér, L.; Mán, I.; Kotogány, E.; Gubán, B.; Batár, P.; Hackler, L., Jr; Kanizsai, I.; Puskás, L. Imidazo[1,2-b]pyrazole-7-carboxamides induce apoptosis in human leukemia cells at nanomolar concentrations. Molecules, 2018, 23(11), 2845.
[http://dx.doi.org/10.3390/molecules23112845] [PMID: 30388846]
[2]
Rowley, J.D. Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature, 1973, 243(5405), 290-293.
[http://dx.doi.org/10.1038/243290a0] [PMID: 4126434]
[3]
Witte, O.N.; Dasgupta, A.; Baltimore, D. Abelson murine leukaemia virus protein is phosphorylated in vitro to form phosphotyrosine. Nature, 1980, 283(5750), 826-831.
[http://dx.doi.org/10.1038/283826a0] [PMID: 6244493]
[4]
Hochhaus, A.; Eigendorff, E.; Ernst, T. Chronische myeloische leukämie. Dtsch. Med. Wochenschr., 2018, 143(18), 1304-1310.
[http://dx.doi.org/10.1055/s-0043-121023] [PMID: 30199910]
[5]
Melo, J.V.; Barnes, D.J. Chronic myeloid leukaemia as a model of disease evolution in human cancer. Nat. Rev. Cancer, 2007, 7(6), 441-453.
[http://dx.doi.org/10.1038/nrc2147] [PMID: 17522713]
[6]
Druker, B.J. Translation of the Philadelphia chromosome into therapy for CML. Blood, 2008, 112(13), 4808-4817.
[http://dx.doi.org/10.1182/blood-2008-07-077958] [PMID: 19064740]
[7]
Ciarcia, R.; Vitiello, M.T.; Galdiero, M.; Pacilio, C.; Iovane, V.; d’Angelo, D.; Pagnini, D.; Caparrotti, G.; Conti, D.; Tomei, V.; Florio, S.; Giordano, A. Imatinib treatment inhibit IL‐6, IL‐8, NF‐KB and AP‐1 production and modulate intracellular calcium in CML patients. J. Cell. Physiol., 2012, 227(6), 2798-2803.
[http://dx.doi.org/10.1002/jcp.23029] [PMID: 21938724]
[8]
El-Tanani, M.; Nsairat, H.; Matalka, I.I.; Lee, Y.F.; Rizzo, M.; Aljabali, A.A.; Mishra, V.; Mishra, Y.; Hromić-Jahjefendić, A.; Tambuwala, M.M. The impact of the BCR-ABL oncogene in the pathology and treatment of chronic myeloid leukemia. Pathol. Res. Pract., 2024, 254, 155161.
[http://dx.doi.org/10.1016/j.prp.2024.155161] [PMID: 38280275]
[9]
Zenebe, B.; Nigussie, H.; Belay, G.; Seboka, N. A review on characterization of BCR – ABL transcript variants for molecular monitoring of chronic myeloid leukemia phenotypes. Hematology, 2023, 28(1), 2284038.
[http://dx.doi.org/10.1080/16078454.2023.2284038] [PMID: 37982440]
[10]
Fu, Y.; Wei, X.; Lin, L.; Xu, W.; Liang, J. Adverse reactions of sorafenib, sunitinib, and imatinib in treating digestive system tumors. Thorac. Cancer, 2018, 9(5), 542-547.
[http://dx.doi.org/10.1111/1759-7714.12608] [PMID: 29575544]
[11]
Leong, Z.P.; Okida, A.; Higuchi, M.; Yamano, Y.; Hikasa, Y. Reversal effects of low-dose imatinib compared with sunitinib on monocrotaline-induced pulmonary and right ventricular remodeling in rats. Vascul. Pharmacol., 2018, 100, 41-50.
[http://dx.doi.org/10.1016/j.vph.2017.10.006] [PMID: 29100963]
[12]
Erçalışkan, A.; Seyhan Erdoğan, D.; Eşkazan, A.E. Current evidence on the efficacy and safety of generic imatinib in CML and the impact of generics on health care costs. Blood Adv., 2021, 5(17), 3344-3353.
[http://dx.doi.org/10.1182/bloodadvances.2021004194] [PMID: 34477815]
[13]
Vener, C.; Banzi, R.; Ambrogi, F.; Ferrero, A.; Saglio, G.; Pravettoni, G.; Sant, M. First-line imatinib vs second- and third-generation TKIs for chronic-phase CML: A systematic review and meta-analysis. Blood Adv., 2020, 4(12), 2723-2735.
[http://dx.doi.org/10.1182/bloodadvances.2019001329] [PMID: 32559295]
[14]
Clarke, W.A.; Chatelut, E.; Fotoohi, A.K.; Larson, R.A.; Martin, J.H.; Mathijssen, R.H.J.; Salamone, S.J. Therapeutic drug monitoring in oncology: International association of therapeutic drug monitoring and clinical toxicology consensus guidelines for imatinib therapy. Eur. J. Cancer, 2021, 157, 428-440.
[http://dx.doi.org/10.1016/j.ejca.2021.08.033] [PMID: 34597977]
[15]
Mauro, M.J. Novel tyrosine kinase inhibitors for patients with inadequate response in chronic myeloid leukemia. Curr. Opin. Hematol., 2019, 26(2), 119-123.
[http://dx.doi.org/10.1097/MOH.0000000000000489] [PMID: 30608253]
[16]
Wojnicz, A.; Colom-Fernández, B.; Steegmann, J.L.; Muñoz-Calleja, C.; Abad-Santos, F.; Ruiz-Nuño, A. Simultaneous determination of imatinib, dasatinib, and nilotinib by liquid chromatography-tandem mass spectrometry and its application to therapeutic drug monitoring. Ther. Drug Monit., 2017, 39(3), 252-262.
[http://dx.doi.org/10.1097/FTD.0000000000000406] [PMID: 28490048]
[17]
Liu, J.; Chen, Z.; Chen, H.; Hou, Y.; Lu, W.; He, J.; Tong, H.; Zhou, Y.; Cai, W. Genetic polymorphisms contribute to the individual variations of imatinib mesylate plasma levels and adverse reactions in chinese GIST patients. Int. J. Mol. Sci., 2017, 18(3), 603.
[http://dx.doi.org/10.3390/ijms18030603] [PMID: 28335376]
[18]
Deininger, M.; Buchdunger, E.; Druker, B.J. The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood, 2005, 105(7), 2640-2653.
[http://dx.doi.org/10.1182/blood-2004-08-3097] [PMID: 15618470]
[19]
Soiffer, R.J.; Davids, M.S.; Chen, Y.B. Tyrosine kinase inhibitors and immune checkpoint blockade in allogeneic hematopoietic cell transplantation. Blood, 2018, 131(10), 1073-1080.
[http://dx.doi.org/10.1182/blood-2017-10-752154] [PMID: 29358177]
[20]
Zhang, J.; Adrián, F.J.; Jahnke, W.; Cowan-Jacob, S.W.; Li, A.G.; Iacob, R.E.; Sim, T.; Powers, J.; Dierks, C.; Sun, F.; Guo, G.R.; Ding, Q.; Okram, B.; Choi, Y.; Wojciechowski, A.; Deng, X.; Liu, G.; Fendrich, G.; Strauss, A.; Vajpai, N.; Grzesiek, S.; Tuntland, T.; Liu, Y.; Bursulaya, B.; Azam, M.; Manley, P.W.; Engen, J.R.; Daley, G.Q.; Warmuth, M.; Gray, N.S. Targeting Bcr–Abl by combining allosteric with ATP-binding-site inhibitors. Nature, 2010, 463(7280), 501-506.
[http://dx.doi.org/10.1038/nature08675] [PMID: 20072125]
[21]
Hu, L.; Cao, T.; Lv, Y.; Ding, Y.; Yang, L.; Zhang, Q.; Guo, M. Design, synthesis, and biological activity of 4-(imidazo[1,2- b]pyridazin-3-yl)-1 H -pyrazol-1-yl-phenylbenzamide derivatives as BCR–ABL kinase inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(23), 5830-5835.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.007] [PMID: 28029512]
[22]
Li, Y.T.; Wang, J.H.; Pan, C.W.; Meng, F.F.; Chu, X.Q.; Ding, Y.; Qu, W.Z.; Li, H.; Yang, C.; Zhang, Q.; Bai, C.G.; Chen, Y. Syntheses and biological evaluation of 1,2,3-triazole and 1,3,4-oxadiazole derivatives of imatinib. Bioorg. Med. Chem. Lett., 2016, 26(5), 1419-1427.
[http://dx.doi.org/10.1016/j.bmcl.2016.01.068] [PMID: 26850004]
[23]
Azevedo, L.D.; Bastos, M.M.; Vasconcelos, F.C.; Hoelz, L.V.B.; Junior, F.P.S.; Dantas, R.F.; de Almeida, A.C.M.; de Oliveira, A.P.; Gomes, L.C.; Maia, R.C.; Boechat, N. Imatinib derivatives as inhibitors of K562 cells in chronic myeloid leukemia. Med. Chem. Res., 2017, 26(11), 2929-2941.
[http://dx.doi.org/10.1007/s00044-017-1993-8]
[24]
Shen, Q.; Bhatt, V.S.; Krieger, I.; Sacchettini, J.C.; Cho, J.H. Structure-guided design of a potent peptide inhibitor targeting the interaction between CRK and ABL kinase. MedChemComm, 2018, 9(3), 519-524.
[http://dx.doi.org/10.1039/C7MD00619E] [PMID: 30108942]
[25]
Laurent, E.; Talpaz, M.; Kantarjian, H.; Kurzrock, R. The BCR gene and philadelphia chromosome-positive leukemogenesis. Cancer Res., 2001, 61(6), 2343-2355.
[PMID: 11289094]
[26]
Hantschel, O.; Grebien, F.; Superti-Furga, G. The growing arsenal of ATP-competitive and allosteric inhibitors of BCR-ABL. Cancer Res., 2012, 72(19), 4890-4895.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-1276] [PMID: 23002203]
[27]
Capdeville, R.; Buchdunger, E.; Zimmermann, J.; Matter, A. Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nat. Rev. Drug Discov., 2002, 1(7), 493-502.
[http://dx.doi.org/10.1038/nrd839] [PMID: 12120256]
[28]
Sangwan, K.; Singh, B. Antiproliferative activity of novel imatinib analogue as potential anticancer agents, synthesis and in vitro screening. Indian J. Pharm. Educ. Res., 2023, 57(2s), s453-s458.
[http://dx.doi.org/10.5530/ijper.57.2s.53]
[29]
Santos, C.; Pimentel, L.; Canzian, H.; Oliveira, A.; Junior, F.; Dantas, R.; Hoelz, L.; Marinho, D.; Cunha, A.; Bastos, M.; Boechat, N. Hybrids of imatinib with quinoline: Synthesis, antimyeloproliferative activity evaluation, and molecular docking. Pharmaceuticals, 2022, 15(3), 309.
[http://dx.doi.org/10.3390/ph15030309] [PMID: 35337107]
[30]
Tierrablanca-Arias, L.E.; Cervantes-Valencia, H.; Piña-Gordillo, M.N.; Chacón-García, L.; Suárez-Castro, A.; Cortes-García, C.J. Aldehyde phenylamino-pyrimidine as key precursor for the synthesis of imatinib analogs and in silico studies of their intermediates. Chem. Proc., 2023, 14, 46.
[http://dx.doi.org/10.3390/ecsoc-27-16108]
[31]
Okamoto, N.; Yagi, K.; Imawaka, S.; Takaoka, M.; Aizawa, F.; Niimura, T.; Goda, M.; Miyata, K.; Kawada, K.; Izawa-Ishizawa, Y.; Sakaguchi, S.; Ishizawa, K. Asciminib, a novel allosteric inhibitor of BCR‐ABL1, shows synergistic effects when used in combination with imatinib with or without drug resistance. Pharmacol. Res. Perspect., 2024, 12(4), e1214.
[http://dx.doi.org/10.1002/prp2.1214] [PMID: 39031848]
[32]
Liu, Y.F.; Wang, C.L.; Bai, Y.J.; Han, N.; Jiao, J.P.; Qi, X.L. A facile total synthesis of imatinib base and its analogues. Org. Process Res. Dev., 2008, 12(3), 490-495.
[http://dx.doi.org/10.1021/op700270n]
[33]
Kinigopoulou, M.; Filippidou, M.; Gogou, M.; Giannousi, A.; Fouka, P.; Ntemou, N.; Alivertis, D.; Georgis, C.; Brentas, A.; Polychronidou, V.; Voulgari, P.; Theodorou, V.; Skobridis, K. An optimized approach in the synthesis of imatinib intermediates and analogues. RSC Advances, 2016, 6(66), 61458-61467.
[http://dx.doi.org/10.1039/C6RA09812F]
[34]
Pan, X.; Dong, J.; Shao, R.; Su, P.; Shi, Y.; Wang, J.; He, L. Expanding the structural diversity of Bcr-Abl inhibitors: Hybrid molecules based on GNF-2 and Imatinib. Bioorg. Med. Chem. Lett., 2015, 25(19), 4164-4168.
[http://dx.doi.org/10.1016/j.bmcl.2015.08.013] [PMID: 26298495]

© 2025 Bentham Science Publishers | Privacy Policy