Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Copper Dyshomeostasis and Diabetic Complications: Chelation Strategies for Management

Author(s): Jahnavi Subramaniam, Aarya Aditi, Kishore Arumugam, Sathya Sri, Subramaniam Rajesh Bharathidevi* and Kunka Mohanram Ramkumar*

Volume 25, Issue 4, 2025

Published on: 26 September, 2024

Page: [277 - 292] Pages: 16

DOI: 10.2174/0113895575308206240911104945

Price: $65

Abstract

Cuproptosis, an emerging concept in the field of diabetes research, presents a novel and promising perspective for the effective management of diabetes mellitus and its associated complications. Diabetes, characterized by chronic hyperglycemia, poses a substantial global health burden, with an increasing prevalence worldwide. Despite significant progress in our understanding of this complex metabolic disorder, optimal therapeutic strategies still remain elusive. The advent of cuproptosis, a term coined to describe copper-induced cellular cell death and its pivotal role in diabetes pathogenesis, opens new avenues for innovative interventions. Copper, an indispensable trace element, plays a pivotal role in a myriad of vital biological processes, encompassing energy production, bolstering antioxidant defenses, and altered cellular signaling. However, in the context of diabetes, this copper homeostasis is perturbed, driven by a combination of genetic predisposition, dietary patterns, and environmental factors. Excessive copper levels act as catalysts for oxidative stress, sparking intricate intracellular signaling cascades that further exacerbate metabolic dysfunction. In this review, we aim to explore the interrelationship between copper and diabetes comprehensively, shedding light on the intricate mechanisms underpinning cuproptosis. By unraveling the roles of copper transporters, copper-dependent enzymes, and cuproptotic signaling pathways, we seek to elucidate potential therapeutic strategies that harness the power of copper modulation in diabetes management. This insight sets the stage for a targeted approach to challenge the complex hurdles posed by diabetes, potentially transforming our therapeutic strategies in the ongoing fight against this pervasive global health concern.

Keywords: Cuproptosis, diabetes, cell signaling, copper metabolism, cell death pathways, chelatin.

Graphical Abstract
[1]
Xie, J.; Yang, Y.; Gao, Y.; He, J. Cuproptosis: Mechanisms and links with cancers. Mol. Cancer, 2023, 22(1), 46.
[http://dx.doi.org/10.1186/s12943-023-01732-y] [PMID: 36882769]
[2]
Gao, L.; Zhang, A. Copper-instigated modulatory cell mortality mechanisms and progress in oncological treatment investigations. Front. Immunol., 2023, 14, 1236063.
[http://dx.doi.org/10.3389/fimmu.2023.1236063] [PMID: 37600774]
[3]
Han, J.; Luo, J.; Wang, C.; Kapilevich, L.; Zhang, X. Roles and mechanisms of copper homeostasis and cuproptosis in osteoarticular diseases. Biomed. Pharmacother., 2024, 174, 116570.
[http://dx.doi.org/10.1016/j.biopha.2024.116570] [PMID: 38599063]
[4]
Yang, L.; Yang, P.; Lip, G.Y.H.; Ren, J. Copper homeostasis and cuproptosis in cardiovascular disease therapeutics. Trends Pharmacol. Sci., 2023, 44(9), 573-585.
[http://dx.doi.org/10.1016/j.tips.2023.07.004] [PMID: 37500296]
[5]
Prohaska, J.R. Role of copper transporters in copper homeostasis. Am. J. Clin. Nutr., 2008, 88(3), 826S-829S.
[http://dx.doi.org/10.1093/ajcn/88.3.826S] [PMID: 18779302]
[6]
Collins, J.F.; Prohaska, J.R.; Knutson, M.D. Metabolic crossroads of iron and copper. Nutr. Rev., 2010, 68(3), 133-147.
[http://dx.doi.org/10.1111/j.1753-4887.2010.00271.x] [PMID: 20384844]
[7]
Tapiero, H.; Townsend, D.M.; Tew, K.D. Trace elements in human physiology and pathology. Copper. Biomed. Pharmacother., 2003, 57(9), 386-398.
[http://dx.doi.org/10.1016/S0753-3322(03)00012-X] [PMID: 14652164]
[8]
Li, Y. Copper homeostasis: Emerging target for cancer treatment. IUBMB Life, 2020, 72(9), 1900-1908.
[http://dx.doi.org/10.1002/iub.2341] [PMID: 32599675]
[9]
Lutsenko, S. Copper trafficking to the secretory pathway. Metallomics, 2016, 8(9), 840-852.
[http://dx.doi.org/10.1039/C6MT00176A] [PMID: 27603756]
[10]
Lutsenko, S.; Bhattacharjee, A.; Hubbard, A.L. Copper handling machinery of the brain. Metallomics, 2010, 2(9), 596-608.
[http://dx.doi.org/10.1039/c0mt00006j] [PMID: 21072351]
[11]
Csiszar, K. Lysyl oxidases: A novel multifunctional amine oxidase family. Prog. Nucleic Acid Res. Mol. Biol., 2001, 70, 1-32.
[http://dx.doi.org/10.1016/S0079-6603(01)70012-8] [PMID: 11642359]
[12]
Lutsenko, S.; LeShane, E.S.; Shinde, U. Biochemical basis of regulation of human copper-transporting ATPases. Arch. Biochem. Biophys., 2007, 463(2), 134-148.
[http://dx.doi.org/10.1016/j.abb.2007.04.013] [PMID: 17562324]
[13]
Hordyjewska, A.; Popiołek, Ł.; Kocot, J. The many face of copper in medicine and treatment. Biometals, 2014, 27(4), 611-621.
[http://dx.doi.org/10.1007/s10534-014-9736-5] [PMID: 24748564]
[14]
de Romaña, D.L.; Olivares, M.; Uauy, R.; Araya, M. Risks and benefits of copper in light of new insights of copper homeostasis. J. Trace Elem. Med. Biol., 2011, 25(1), 3-13.
[http://dx.doi.org/10.1016/j.jtemb.2010.11.004] [PMID: 21342755]
[15]
Viktorínová, A.; Tošerová, E.; Križko, M.; Ďuračková, Z. Altered metabolism of copper, zinc, and magnesium is associated with increased levels of glycated hemoglobin in patients with diabetes mellitus. Metabolism, 2009, 58(10), 1477-1482.
[http://dx.doi.org/10.1016/j.metabol.2009.04.035] [PMID: 19592053]
[16]
Gong, D.; Lu, J.; Chen, X.; Reddy, S.; Crossman, D.J.; Glyn-Jones, S.; Choong, Y.S.; Kennedy, J.; Barry, B.; Zhang, S.; Chan, Y.K.; Ruggiero, K.; Phillips, A.R.J.; Cooper, G.J.S. A copper(II)-selective chelator ameliorates diabetes-evoked renal fibrosis and albuminuria, and suppresses pathogenic TGF-β activation in the kidneys of rats used as a model of diabetes. Diabetologia, 2008, 51(9), 1741-1751.
[http://dx.doi.org/10.1007/s00125-008-1088-7] [PMID: 18636238]
[17]
Ozcelik, D.; Tuncdemir, M.; Ozturk, M.; Uzun, H. Evaluation of trace elements and oxidative stress levels in the liver and kidney of streptozotocin-induced experimental diabetic rat model. Gen. Physiol. Biophys., 2012, 30(4), 356-363.
[http://dx.doi.org/10.4149/gpb_2011_04_356] [PMID: 22131317]
[18]
Raz, I.; Havivi, E. Influence of chronic diabetes on tissue and blood cells status of zinc, copper, and chromium in the rat. Diabetes Res., 1988, 7(1), 19-23.
[PMID: 3402163]
[19]
Lowe, J.; Taveira-da-Silva, R.; Hilário-Souza, E. Dissecting copper homeostasis in diabetes mellitus. IUBMB Life, 2017, 69(4), 255-262.
[http://dx.doi.org/10.1002/iub.1614] [PMID: 28276155]
[20]
Zhang, S.; Liu, H.; Amarsingh, G.V.; Cheung, C.C.H.; Hogl, S.; Narayanan, U.; Zhang, L.; McHarg, S.; Xu, J.; Gong, D.; Kennedy, J.; Barry, B.; Choong, Y.S.; Phillips, A.R.J.; Cooper, G.J.S. Diabetic cardiomyopathy is associated with defective myocellular copper regulation and both defects are rectified by divalent copper chelation. Cardiovasc. Diabetol., 2014, 13(1), 100.
[http://dx.doi.org/10.1186/1475-2840-13-100] [PMID: 24927960]
[21]
Ito, S.; Fujita, H.; Narita, T.; Yaginuma, T.; Kawarada, Y.; Kawagoe, M.; Sugiyama, T. Urinary copper excretion in type 2 diabetic patients with nephropathy. Nephron J., 2001, 88(4), 307-312.
[http://dx.doi.org/10.1159/000046013] [PMID: 11474224]
[22]
Cooper, G.J.S.; Chan, Y.K.; Dissanayake, A.M.; Leahy, F.E.; Keogh, G.F.; Frampton, C.M.; Gamble, G.D.; Brunton, D.H.; Baker, J.R.; Poppitt, S.D. Demonstration of a hyperglycemia-driven pathogenic abnormality of copper homeostasis in diabetes and its reversibility by selective chelation: Quantitative comparisons between the biology of copper and eight other nutritionally essential elements in normal and diabetic individuals. Diabetes, 2005, 54(5), 1468-1476.
[http://dx.doi.org/10.2337/diabetes.54.5.1468] [PMID: 15855335]
[23]
Qiu, Q.; Zhang, F.; Zhu, W.; Wu, J.; Liang, M. Copper in diabetes mellitus: A meta-analysis and systematic review of plasma and serum studies. Biol. Trace Elem. Res., 2017, 177(1), 53-63.
[http://dx.doi.org/10.1007/s12011-016-0877-y] [PMID: 27785738]
[24]
Masad, A.; Hayes, L.; Tabner, B.J.; Turnbull, S.; Cooper, L.J.; Fullwood, N.J.; German, M.J.; Kametani, F.; El-Agnaf, O.M.A.; Allsop, D. Copper‐mediated formation of hydrogen peroxide from the amylin peptide: A novel mechanism for degeneration of islet cells in type‐2 diabetes mellitus? FEBS Lett., 2007, 581(18), 3489-3493.
[http://dx.doi.org/10.1016/j.febslet.2007.06.061] [PMID: 17617411]
[25]
Sarkar, A.; Dash, S.; Barik, B.K.; Muttigi, M.S.; Kedage, V.; Shetty, J.K.; Prakash, M. Copper and ceruloplasmin levels in relation to total thiols and GST in type 2 diabetes mellitus patients. Indian J. Clin. Biochem., 2010, 25(1), 74-76.
[http://dx.doi.org/10.1007/s12291-010-0015-0] [PMID: 23105888]
[26]
Naka, T.; Kaneto, H.; Katakami, N.; Matsuoka, T.; Harada, A.; Yamasaki, Y.; Matsuhisa, M.; Shimomura, I. Association of serum copper levels and glycemic control in patients with type 2 diabetes. Endocr. J., 2013, 60(3), 393-396.
[http://dx.doi.org/10.1507/endocrj.EJ12-0342] [PMID: 23197044]
[27]
Li, S.; Zhang, X.; Cui, X.; Zhao, L.; Rong, Y. Comment on relationship of circulating copper level with gestational diabetes mellitus: A meta-analysis and systemic review. Biol. Trace Elem. Res., 2022, 200(6), 3039-3040.
[http://dx.doi.org/10.1007/s12011-021-02856-2] [PMID: 34435314]
[28]
Li, P.; Yin, J.; Zhu, Y.; Li, S.; Chen, S.; Sun, T.; Shan, Z.; Wang, J.; Shang, Q.; Li, X.; Yang, W.; Liu, L. Association between plasma concentration of copper and gestational diabetes mellitus. Clin. Nutr., 2019, 38(6), 2922-2927.
[http://dx.doi.org/10.1016/j.clnu.2018.12.032] [PMID: 30661907]
[29]
Li, J.; Jiang, Y.; Xu, T.; Zhang, Y.; Xue, J.; Gao, X.; Yang, X.; Wang, X.; Jia, X.; Cheng, W.; Jin, S. Wilson disease with novel compound heterozygote mutations in the ATP7B gene presenting with severe diabetes. Diabetes Care, 2020, 43(6), 1363-1365.
[http://dx.doi.org/10.2337/dc19-2033] [PMID: 32291276]
[30]
Muscogiuri, G.; Salmon, A.B.; Aguayo-Mazzucato, C.; Li, M.; Balas, B.; Guardado-Mendoza, R.; Giaccari, A.; Reddick, R.L.; Reyna, S.M.; Weir, G.; DeFronzo, R.A.; Van Remmen, H.; Musi, N. Genetic disruption of SOD1 gene causes glucose intolerance and impairs β-cell function. Diabetes, 2013, 62(12), 4201-4207.
[http://dx.doi.org/10.2337/db13-0314] [PMID: 24009256]
[31]
Tanaka, A.; Kaneto, H.; Miyatsuka, T.; Yamamoto, K.; Yoshiuchi, K.; Yamasaki, Y.; Shimomura, I.; Matsuoka, T.; Matsuhisa, M. Role of copper ion in the pathogenesis of type 2 diabetes. Endocr. J., 2009, 56(5), 699-706.
[http://dx.doi.org/10.1507/endocrj.K09E-051] [PMID: 19461160]
[32]
Gembillo, G.; Labbozzetta, V.; Giuffrida, A.E.; Peritore, L.; Calabrese, V.; Spinella, C.; Stancanelli, M.R.; Spallino, E.; Visconti, L.; Santoro, D. Potential role of copper in diabetes and diabetic kidney disease. Metabolites, 2022, 13(1), 17.
[http://dx.doi.org/10.3390/metabo13010017] [PMID: 36676942]
[33]
Harris, E.D. Copper as a cofactor and regulator of copper,zinc superoxide dismutase. J. Nutr., 1992, 122(3)(Suppl.), 636-640.
[http://dx.doi.org/10.1093/jn/122.suppl_3.636] [PMID: 1542024]
[34]
Kazi, T.G.; Afridi, H.I.; Kazi, N.; Jamali, M.K.; Arain, M.B.; Jalbani, N.; Kandhro, G.A. Copper, chromium, manganese, iron, nickel, and zinc levels in biological samples of diabetes mellitus patients. Biol. Trace Elem. Res., 2008, 122(1), 1-18.
[http://dx.doi.org/10.1007/s12011-007-8062-y] [PMID: 18193174]
[35]
Eaton, J.W.; Qian, M. Interactions of copper with glycated proteins: possible involvement in the etiology of diabetic neuropathy. Mol. Cell. Biochem., 2002, 234/235(1), 135-142.
[http://dx.doi.org/10.1023/A:1015988817587] [PMID: 12162426]
[36]
Khan, A.R.; Awan, F.R. Metals in the pathogenesis of type 2 diabetes. J. Diabetes Metab. Disord., 2014, 13(1), 16.
[http://dx.doi.org/10.1186/2251-6581-13-16] [PMID: 24401367]
[37]
Guest, P.C.; Pipeleers, D.; Rossier, J.; Rhodes, C.J.; Hutton, J.C. Co-secretion of carboxypeptidase H and insulin from isolated rat islets of Langerhans. Biochem. J., 1989, 264(2), 503-508.
[http://dx.doi.org/10.1042/bj2640503] [PMID: 2481446]
[38]
Zhang, Y.M.; Zimmer, M.A.; Guardia, T.; Callahan, S.J.; Mondal, C.; Di Martino, J.; Takagi, T.; Fennell, M.; Garippa, R.; Campbell, N.R.; Bravo-Cordero, J.J.; White, R.M. Distant insulin signaling regulates vertebrate pigmentation through the sheddase Bace2. Dev. Cell, 2018, 45(5), 580-594.e7.
[http://dx.doi.org/10.1016/j.devcel.2018.04.025] [PMID: 29804876]
[39]
Sun, Z.; Shao, Y.; Yan, K.; Yao, T.; Liu, L.; Sun, F.; Wu, J.; Huang, Y. The link between trace metal elements and glucose metabolism: Evidence from zinc, copper, iron, and manganese-mediated metabolic regulation. Metabolites, 2023, 13(10), 1048.
[http://dx.doi.org/10.3390/metabo13101048] [PMID: 37887373]
[40]
Caturano, A.; D’Angelo, M.; Mormone, A.; Russo, V.; Mollica, M.P.; Salvatore, T.; Galiero, R.; Rinaldi, L.; Vetrano, E.; Marfella, R.; Monda, M.; Giordano, A.; Sasso, F.C. Oxidative stress in type 2 diabetes: impacts from pathogenesis to lifestyle modifications. Curr. Issues Mol. Biol., 2023, 45(8), 6651-6666.
[http://dx.doi.org/10.3390/cimb45080420] [PMID: 37623239]
[41]
Satyanarayana, G.; Keisham, N.; Batra, H.S.; v, S.M.; Khan, M.; Gupta, S.; Mahindra, V. Evaluation of serum ceruloplasmin levels as a biomarker for oxidative stress in patients with diabetic retinopathy. Cureus, 2021, 13(2), e13070.
[http://dx.doi.org/10.7759/cureus.13070] [PMID: 33680612]
[42]
Imlay, J.A.; Chin, S.M.; Linn, S. Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science, 1988, 240(4852), 640-642.
[http://dx.doi.org/10.1126/science.2834821] [PMID: 2834821]
[43]
Che, M.; Wang, R.; Li, X.; Wang, H.Y.; Zheng, X.F.S. Expanding roles of superoxide dismutases in cell regulation and cancer. Drug Discov. Today, 2016, 21(1), 143-149.
[http://dx.doi.org/10.1016/j.drudis.2015.10.001] [PMID: 26475962]
[44]
Nithya, K.; Angeline, T.; Isabel, W.; Asirvatham, A.J. SOD1 Gene +35A/C (exon3/intron3) Polymorphism in Type 2 Diabetes Mellitus among South Indian Population. Genet. Res. Int., 2016, 2016, 1-5.
[http://dx.doi.org/10.1155/2016/3787268] [PMID: 27190652]
[45]
Lynch, S.M.; Colón, W. Dominant role of copper in the kinetic stability of Cu/Zn superoxide dismutase. Biochem. Biophys. Res. Commun., 2006, 340(2), 457-461.
[http://dx.doi.org/10.1016/j.bbrc.2005.12.024] [PMID: 16375856]
[46]
Liu, Y.; Miao, J. An emerging role of defective copper metabolism in heart disease. Nutrients, 2022, 14(3), 700.
[http://dx.doi.org/10.3390/nu14030700] [PMID: 35277059]
[47]
Hurrle, S.; Hsu, W.H. The etiology of oxidative stress in insulin resistance. Biomed. J., 2017, 40(5), 257-262.
[http://dx.doi.org/10.1016/j.bj.2017.06.007] [PMID: 29179880]
[48]
Drews, G.; Krippeit-Drews, P.; Düfer, M. Oxidative stress and beta-cell dysfunction. Pflugers Arch., 2010, 460(4), 703-718.
[http://dx.doi.org/10.1007/s00424-010-0862-9] [PMID: 20652307]
[49]
Kashihara, N.; Haruna, Y.; Kondeti, V.K.; Kanwar, Y.S. Oxidative stress in diabetic nephropathy. Curr. Med. Chem., 2010, 17(34), 4256-4269.
[http://dx.doi.org/10.2174/092986710793348581] [PMID: 20939814]
[50]
Kowluru, R.A.; Chan, P.S. Oxidative stress and diabetic retinopathy. J. Diabetes Res., 2007, 2007(1), 043603.
[http://dx.doi.org/10.1155/2007/43603] [PMID: 17641741]
[51]
Hosseini, A.; Abdollahi, M. Diabetic neuropathy and oxidative stress: Therapeutic perspectives. Oxid. Med. Cell. Longev., 2013, 2013, 1-15.
[http://dx.doi.org/10.1155/2013/168039] [PMID: 23738033]
[52]
Liu, Z.; Wang, M.; Zhang, C.; Zhou, S.; Ji, G. Molecular functions of ceruloplasmin in metabolic disease pathology. Diabetes Metab. Syndr. Obes., 2022, 15, 695-711.
[http://dx.doi.org/10.2147/DMSO.S346648] [PMID: 35264864]
[53]
Hellman, N.E.; Gitlin, J.D. Ceruloplasmin metabolism and function. Annu. Rev. Nutr., 2002, 22(1), 439-458.
[http://dx.doi.org/10.1146/annurev.nutr.22.012502.114457] [PMID: 12055353]
[54]
Chacko, S.K.; Cheluvappa, R. Increased ceruloplasmin and fibrinogen in type 2 diabetes corresponds to decreased anti-oxidant activity in a preliminary tertiary South Indian hospital study. Exp. Clin. Endocrinol. Diabetes, 2010, 118(1), 64-67.
[http://dx.doi.org/10.1055/s-0029-1225647] [PMID: 19834873]
[55]
Rusticeanu, M.; Zimmer, V.; Schleithoff, L.; Wonney, K.; Viera, J.; Zimmer, A.; Hübschen, U.; Bohle, R.M.; Grünhage, F.; Lammert, F. Novel ceruloplasmin mutation causing aceruloplasminemia with hepatic iron overload and diabetes without neurological symptoms. Clin. Genet., 2014, 85(3), 300-301.
[http://dx.doi.org/10.1111/cge.12145] [PMID: 23557349]
[56]
Zhang, B.; Burke, R. Copper homeostasis and the ubiquitin proteasome system. Metallomics, 2023, 15(3), mfad010.
[http://dx.doi.org/10.1093/mtomcs/mfad010] [PMID: 36822629]
[57]
Rao, R.V.; Bredesen, D.E. Misfolded proteins, endoplasmic reticulum stress and neurodegeneration. Curr. Opin. Cell Biol., 2004, 16(6), 653-662.
[http://dx.doi.org/10.1016/j.ceb.2004.09.012] [PMID: 15530777]
[58]
Yang, Y.; Feng, Q.; Luan, Y.; Liu, H.; Jiao, Y.; Hao, H.; Yu, B.; Luan, Y.; Ren, K. Exploring cuproptosis as a mechanism and potential intervention target in cardiovascular diseases. Front. Pharmacol., 2023, 14, 1229297.
[http://dx.doi.org/10.3389/fphar.2023.1229297] [PMID: 37637426]
[59]
Duarte, I.F.; Caio, J.; Moedas, M.F.; Rodrigues, L.A.; Leandro, A.P.; Rivera, I.A.; Silva, M.F.B. Dihydrolipoamide dehydrogenase, pyruvate oxidation, and acetylation-dependent mechanisms intersecting drug iatrogenesis. Cell. Mol. Life Sci., 2021, 78(23), 7451-7468.
[http://dx.doi.org/10.1007/s00018-021-03996-3] [PMID: 34718827]
[60]
Tsvetkov, P.; Coy, S.; Petrova, B.; Dreishpoon, M.; Verma, A.; Abdusamad, M.; Rossen, J.; Joesch-Cohen, L.; Humeidi, R.; Spangler, R.D.; Eaton, J.K.; Frenkel, E.; Kocak, M.; Corsello, S.M.; Lutsenko, S.; Kanarek, N.; Santagata, S.; Golub, T.R. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science, 2022, 375(6586), 1254-1261.
[http://dx.doi.org/10.1126/science.abf0529] [PMID: 35298263]
[61]
Tian, Z.; Jiang, S.; Zhou, J.; Zhang, W. Copper homeostasis and cuproptosis in mitochondria. Life Sci., 2023, 334, 122223.
[http://dx.doi.org/10.1016/j.lfs.2023.122223] [PMID: 38084674]
[62]
Tong, X.; Tang, R.; Xiao, M.; Xu, J.; Wang, W.; Zhang, B.; Liu, J.; Yu, X.; Shi, S. Targeting cell death pathways for cancer therapy: Recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. J. Hematol. Oncol., 2022, 15(1), 174.
[http://dx.doi.org/10.1186/s13045-022-01392-3] [PMID: 36482419]
[63]
Ghemrawi, R.; Khair, M. Endoplasmic reticulum stress and unfolded protein response in neurodegenerative diseases. Int. J. Mol. Sci., 2020, 21(17), 6127.
[http://dx.doi.org/10.3390/ijms21176127] [PMID: 32854418]
[64]
Oe, S.; Miyagawa, K.; Honma, Y.; Harada, M. Copper induces hepatocyte injury due to the endoplasmic reticulum stress in cultured cells and patients with Wilson disease. Exp. Cell Res., 2016, 347(1), 192-200.
[http://dx.doi.org/10.1016/j.yexcr.2016.08.003] [PMID: 27502587]
[65]
Ji, P.; Wang, P.; Chen, H.; Xu, Y.; Ge, J.; Tian, Z.; Yan, Z. Potential of copper and copper compounds for anticancer applications. Pharmaceuticals (Basel), 2023, 16(2), 234.
[http://dx.doi.org/10.3390/ph16020234] [PMID: 37259382]
[66]
Gromadzka, G.; Tarnacka, B.; Flaga, A.; Adamczyk, A. Copper dyshomeostasis in neurodegenerative diseases—Therapeutic implications. Int. J. Mol. Sci., 2020, 21(23), 9259.
[http://dx.doi.org/10.3390/ijms21239259] [PMID: 33291628]
[67]
Squitti, R.; Simonelli, I.; Ventriglia, M.; Siotto, M.; Pasqualetti, P.; Rembach, A.; Doecke, J.; Bush, A.I. Meta-analysis of serum non-ceruloplasmin copper in Alzheimer’s disease. J. Alzheimers Dis., 2013, 38(4), 809-822.
[http://dx.doi.org/10.3233/JAD-131247] [PMID: 24072069]
[68]
Squitti, R.; Lupoi, D.; Pasqualetti, P.; Dal Forno, G.; Vernieri, F.; Chiovenda, P.; Rossi, L.; Cortesi, M.; Cassetta, E.; Rossini, P.M. Elevation of serum copper levels in Alzheimer’s disease. Neurology, 2002, 59(8), 1153-1161.
[http://dx.doi.org/10.1212/WNL.59.8.1153] [PMID: 12391342]
[69]
Bucossi, S.; Ventriglia, M.; Panetta, V.; Salustri, C.; Pasqualetti, P.; Mariani, S.; Siotto, M.; Rossini, P.M.; Squitti, R. Copper in Alzheimer’s disease: A meta-analysis of serum,plasma, and cerebrospinal fluid studies. J. Alzheimers Dis., 2011, 24(1), 175-185.
[http://dx.doi.org/10.3233/JAD-2010-101473] [PMID: 21187586]
[70]
Tiwari, A.; Liba, A.; Sohn, S.H.; Seetharaman, S.V.; Bilsel, O.; Matthews, C.R.; Hart, P.J.; Valentine, J.S.; Hayward, L.J. Metal deficiency increases aberrant hydrophobicity of mutant superoxide dismutases that cause amyotrophic lateral sclerosis. J. Biol. Chem., 2009, 284(40), 27746-27758.
[http://dx.doi.org/10.1074/jbc.M109.043729] [PMID: 19651777]
[71]
Pratt, A.J.; Shin, D.S.; Merz, G.E.; Rambo, R.P.; Lancaster, W.A.; Dyer, K.N.; Borbat, P.P.; Poole, F.L., II; Adams, M.W.W.; Freed, J.H.; Crane, B.R.; Tainer, J.A.; Getzoff, E.D. Aggregation propensities of superoxide dismutase G93 hotspot mutants mirror ALS clinical phenotypes. Proc. Natl. Acad. Sci. USA, 2014, 111(43), E4568-E4576.
[http://dx.doi.org/10.1073/pnas.1308531111] [PMID: 25316790]
[72]
Bourassa, M.W.; Brown, H.H.; Borchelt, D.R.; Vogt, S.; Miller, L.M. Metal-deficient aggregates and diminished copper found in cells expressing SOD1 mutations that cause ALS. Front. Aging Neurosci., 2014, 6, 110.
[http://dx.doi.org/10.3389/fnagi.2014.00110] [PMID: 24982630]
[73]
Tokuda, E.; Okawa, E.; Ono, S. Dysregulation of intracellular copper trafficking pathway in a mouse model of mutant copper/zinc superoxide dismutase‐linked familial amyotrophic lateral sclerosis. J. Neurochem., 2009, 111(1), 181-191.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06310.x] [PMID: 19656261]
[74]
Enge, T.G.; Ecroyd, H.; Jolley, D.F.; Yerbury, J.J.; Dosseto, A. Longitudinal assessment of metal concentrations and copper isotope ratios in the G93A SOD1 mouse model of amyotrophic lateral sclerosis. Metallomics, 2017, 9(2), 161-174.
[http://dx.doi.org/10.1039/C6MT00270F] [PMID: 28067393]
[75]
Roos, P.M.; Vesterberg, O.; Syversen, T.; Flaten, T.P.; Nordberg, M. Metal concentrations in cerebrospinal fluid and blood plasma from patients with amyotrophic lateral sclerosis. Biol. Trace Elem. Res., 2013, 151(2), 159-170.
[http://dx.doi.org/10.1007/s12011-012-9547-x] [PMID: 23225075]
[76]
Dexter, D.T.; Carayon, A.; Javoy-Agid, F.; Agid, Y.; Wells, F.R.; Daniel, S.E.; Lees, A.J.; Jenner, P.; Marsden, C.D. Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain, 1991, 114(4), 1953-1975.
[http://dx.doi.org/10.1093/brain/114.4.1953] [PMID: 1832073]
[77]
Fox, J.H.; Kama, J.A.; Lieberman, G.; Chopra, R.; Dorsey, K.; Chopra, V.; Volitakis, I.; Cherny, R.A.; Bush, A.I.; Hersch, S. Mechanisms of copper ion mediated Huntington’s disease progression. PLoS One, 2007, 2(3), e334.
[http://dx.doi.org/10.1371/journal.pone.0000334] [PMID: 17396163]
[78]
Pavithra, V.; Sathisha, T.G.; Kasturi, K.; Mallika, D.S.; Amos, S.J.; Ragunatha, S. Serum levels of metal ions in female patients with breast cancer. J. Clin. Diagn. Res., 2015, 9(1), BC25-c27.
[http://dx.doi.org/10.7860/JCDR/2015/11627.5476] [PMID: 25737978]
[79]
Feng, J.F.; Lu, L.; Zeng, P.; Yang, Y.H.; Luo, J.; Yang, Y.W.; Wang, D. Serum total oxidant/antioxidant status and trace element levels in breast cancer patients. Int. J. Clin. Oncol., 2012, 17(6), 575-583.
[http://dx.doi.org/10.1007/s10147-011-0327-y] [PMID: 21968912]
[80]
Nayak, S.B.; Bhat, V.R.; Upadhyay, D.; Udupa, S.L. Copper and ceruloplasmin status in serum of prostate and colon cancer patients. Indian J. Physiol. Pharmacol., 2003, 47(1), 108-110.
[PMID: 12708132]
[81]
Mortazavi, H.; Sabour, S.; Baharvand, M.; Manifar, S.; Akkafan, R. Serum levels of ferritin, copper, and zinc in patients with oral cancer. Biomed. J., 2014, 37(5), 331-336.
[http://dx.doi.org/10.4103/2319-4170.132888] [PMID: 25179706]
[82]
Shen, F.; Cai, W.S.; Li, J.L.; Feng, Z.; Cao, J.; Xu, B. The association between serum levels of selenium, copper, and magnesium with thyroid cancer: A meta-analysis. Biol. Trace Elem. Res., 2015, 167(2), 225-235.
[http://dx.doi.org/10.1007/s12011-015-0304-9] [PMID: 25820485]
[83]
Basu, S.; Singh, M.K.; Singh, T.B.; Bhartiya, S.K.; Singh, S.P.; Shukla, V.K. Heavy and trace metals in carcinoma of the gallbladder. World J. Surg., 2013, 37(11), 2641-2646.
[http://dx.doi.org/10.1007/s00268-013-2164-9] [PMID: 23942528]
[84]
Margalioth, E.J.; Schenker, J.G.; Chevion, M. Copper and zinc levels in normal and malignant tissues. Cancer, 1983, 52(5), 868-872.
[http://dx.doi.org/10.1002/1097-0142(19830901)52:5<868::AID-CNCR2820520521>3.0.CO;2-K] [PMID: 6871828]
[85]
Yaman, M.; Kaya, G.; Simsek, M. Comparison of trace element concentrations in cancerous and noncancerous human endometrial and ovary tissues. Int. J. Gynecol. Cancer, 2007, 17(1), 220-228.
[http://dx.doi.org/10.1111/j.1525-1438.2006.00742.x] [PMID: 17291257]
[86]
Lener, M.R.; Scott, R.J.; Wiechowska-Kozłowska, A.; Serrano-Fernández, P.; Baszuk, P.; Jaworska-Bieniek, K.; Sukiennicki, G.; Marciniak, W.; Muszyńska, M.; Kładny, J.; Gromowski, T.; Kaczmarek, K.; Jakubowska, A.; Lubiński, J. Serum concentrations of selenium and copper in patients diagnosed with pancreatic cancer. Cancer Res. Treat., 2016, 48(3), 1056-1064.
[http://dx.doi.org/10.4143/crt.2015.282] [PMID: 26727715]
[87]
Saleh, S.A.K.; Adly, H.M.; Abdelkhaliq, A.A.; Nassir, A.M. Serum levels of selenium, zinc, copper, manganese, and iron in prostate cancer patients. Curr. Urol., 2020, 14(1), 44-49.
[http://dx.doi.org/10.1159/000499261] [PMID: 32398996]
[88]
Gupta, S.K.; Shukla, V.K.; Vaidya, M.P.; Roy, S.K.; Gupta, S. Serum and tissue trace elements in colorectal cancer. J. Surg. Oncol., 1993, 52(3), 172-175.
[http://dx.doi.org/10.1002/jso.2930520311] [PMID: 8441275]
[89]
Díez, M.; Arroyo, M.; Cerdàn, F.J.; Muñoz, M.; Martin, M.A.; Balibrea, J.L. Serum and tissue trace metal levels in lung cancer. Oncology, 1989, 46(4), 230-234.
[http://dx.doi.org/10.1159/000226722] [PMID: 2740065]
[90]
Sharma, K.; Mittal, D.K.; Kesarwani, R.C.; Kamboj, V.P.; Chowdhery. Diagnostic and prognostic significance of serum and tissue trace elements in breast malignancy. Indian J. Med. Sci., 1994, 48(10), 227-232.
[PMID: 7829172]
[91]
Chen, X.; Cai, Q.; Liang, R.; Zhang, D.; Liu, X.; Zhang, M.; Xiong, Y.; Xu, M.; Liu, Q.; Li, P.; Yu, P.; Shi, A. Copper homeostasis and copper-induced cell death in the pathogenesis of cardiovascular disease and therapeutic strategies. Cell Death Dis., 2023, 14(2), 105.
[http://dx.doi.org/10.1038/s41419-023-05639-w] [PMID: 36774340]
[92]
Ford, E.S. Serum copper concentration and coronary heart disease among US adults. Am. J. Epidemiol., 2000, 151(12), 1182-1188.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a010168] [PMID: 10905530]
[93]
Kok, F.J.; Van Duijn, C.M.; Hofman, A.; Van Der Voet, G.B.; De Wolff, F.A.; Paays, C.H.C.; Valkenburg, H.A. Serum copper and zinc and the risk of death from cancer and cardiovascular disease. Am. J. Epidemiol., 1988, 128(2), 352-359.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a114975] [PMID: 3394701]
[94]
Medeiros, D.M.; Wildman, R.E.C. Newer findings on a unified perspective of copper restriction and cardiomyopathy. Exp. Biol. Med. (Maywood), 1997, 215(4), 299-313.
[http://dx.doi.org/10.3181/00379727-215-44141] [PMID: 9270715]
[95]
DiNicolantonio, J.J.; Mangan, D.; O’Keefe, J.H. Copper deficiency may be a leading cause of ischaemic heart disease. Open Heart, 2018, 5(2), e000784.
[http://dx.doi.org/10.1136/openhrt-2018-000784] [PMID: 30364437]
[96]
Kang, Y.J.; Wu, H.; Saari, J.T. Alterations in hypertrophic gene expression by dietary copper restriction in mouse heart. Proc. Soc. Exp. Biol. Med., 2000, 223(3), 282-287.
[PMID: 10719841]
[97]
Chen, L.; Min, J.; Wang, F. Copper homeostasis and cuproptosis in health and disease. Signal Transduct. Target. Ther., 2022, 7(1), 378.
[http://dx.doi.org/10.1038/s41392-022-01229-y] [PMID: 36414625]
[98]
Ke, D.; Zhang, Z.; Liu, J.; Chen, P.; Li, J.; Sun, X.; Chu, Y.; Li, L. Ferroptosis, necroptosis and cuproptosis: Novel forms of regulated cell death in diabetic cardiomyopathy. Front. Cardiovasc. Med., 2023, 10, 1135723.
[http://dx.doi.org/10.3389/fcvm.2023.1135723] [PMID: 36970345]
[99]
Uriu-Adams, J.Y.; Keen, C.L. Copper, oxidative stress, and human health. Mol. Aspects Med., 2005, 26(4-5), 268-298.
[http://dx.doi.org/10.1016/j.mam.2005.07.015] [PMID: 16112185]
[100]
Zou, Y.; Wu, S.; Xu, X.; Tan, X.; Yang, S.; Chen, T.; Zhang, J.; Li, S.; Li, W.; Wang, F. Cope with copper: From molecular mechanisms of cuproptosis to copper-related kidney diseases. Int. Immunopharmacol., 2024, 133, 112075.
[http://dx.doi.org/10.1016/j.intimp.2024.112075] [PMID: 38663316]
[101]
Chang, W.; Li, P. Copper and Diabetes: Current Research and Prospect. Mol. Nutr. Food Res., 2023, 67(23), 2300468.
[http://dx.doi.org/10.1002/mnfr.202300468] [PMID: 37863813]
[102]
MW Hasanato, R. Trace elements in type 2 diabetes mellitus and their association with glycemic control. Afr. Health Sci., 2020, 20(1), 287-293.
[http://dx.doi.org/10.4314/ahs.v20i1.34] [PMID: 33402917]
[103]
Siddiqui, K.; Bawazeer, N.; Scaria Joy, S. Variation in macro and trace elements in progression of type 2 diabetes. ScientificWorldJournal, 2014, 2014, 1-9.
[http://dx.doi.org/10.1155/2014/461591] [PMID: 25162051]
[104]
Zheng, Y.; Li, X.K.; Wang, Y.; Cai, L. The role of zinc, copper and iron in the pathogenesis of diabetes and diabetic complications: therapeutic effects by chelators. Hemoglobin, 2008, 32(1-2), 135-145.
[http://dx.doi.org/10.1080/03630260701727077] [PMID: 18274991]
[105]
Cooper, G.J.S. Therapeutic potential of copper chelation with triethylenetetramine in managing diabetes mellitus and Alzheimer’s disease. Drugs, 2011, 71(10), 1281-1320.
[http://dx.doi.org/10.2165/11591370-000000000-00000] [PMID: 21770477]
[106]
Cooper, G.J. Selective divalent copper chelation for the treatment of diabetes mellitus. Curr. Med. Chem., 2012, 19(17), 2828-2860.
[http://dx.doi.org/10.2174/092986712800609715] [PMID: 22455587]
[107]
Cooper, G.J.S.; Phillips, A.R.J.; Choong, S.Y.; Leonard, B.L.; Crossman, D.J.; Brunton, D.H.; Saafi, L.; Dissanayake, A.M.; Cowan, B.R.; Young, A.A.; Occleshaw, C.J.; Chan, Y.K.; Leahy, F.E.; Keogh, G.F.; Gamble, G.D.; Allen, G.R.; Pope, A.J.; Boyd, P.D.W.; Poppitt, S.D.; Borg, T.K.; Doughty, R.N.; Baker, J.R. Regeneration of the heart in diabetes by selective copper chelation. Diabetes, 2004, 53(9), 2501-2508.
[http://dx.doi.org/10.2337/diabetes.53.9.2501] [PMID: 15331567]
[108]
Jüllig, M.; Chen, X.; Hickey, A.J.; Crossman, D.J.; Xu, A.; Wang, Y.; Greenwood, D.R.; Choong, Y.S.; Schönberger, S.J.; Middleditch, M.J.; Phillips, A.R.J.; Cooper, G.J.S. Reversal of diabetes‐evoked changes in mitochondrial protein expression of cardiac left ventricle by treatment with a copper(II)‐selective chelator. Proteomics Clin. Appl., 2007, 1(4), 387-399.
[http://dx.doi.org/10.1002/prca.200600770] [PMID: 21136691]
[109]
Lu, J.; Gong, D.; Choong, S.Y.; Xu, H.; Chan, Y-K.; Chen, X.; Fitzpatrick, S.; Glyn-Jones, S.; Zhang, S.; Nakamura, T.; Ruggiero, K.; Obolonkin, V.; Poppitt, S.D.; Phillips, A.R.J.; Cooper, G.J.S. Copper(II)-selective chelation improves function and antioxidant defences in cardiovascular tissues of rats as a model of diabetes: Comparisons between triethylenetetramine and three less copper-selective transition-metal-targeted treatments. Diabetologia, 2010, 53(6), 1217-1226.
[http://dx.doi.org/10.1007/s00125-010-1698-8] [PMID: 20221822]
[110]
Polishchuk, E.V.; Concilli, M.; Iacobacci, S.; Chesi, G.; Pastore, N.; Piccolo, P.; Paladino, S.; Baldantoni, D.; van IJzendoorn, S.C.D.; Chan, J.; Chang, C.J.; Amoresano, A.; Pane, F.; Pucci, P.; Tarallo, A.; Parenti, G.; Brunetti-Pierri, N.; Settembre, C.; Ballabio, A.; Polishchuk, R.S. Wilson disease protein ATP7B utilizes lysosomal exocytosis to maintain copper homeostasis. Dev. Cell, 2014, 29(6), 686-700.
[http://dx.doi.org/10.1016/j.devcel.2014.04.033] [PMID: 24909901]
[111]
Sudhahar, V.; Urao, N.; Oshikawa, J.; McKinney, R.D.; Llanos, R.M.; Mercer, J.F.B.; Ushio-Fukai, M.; Fukai, T. Copper transporter ATP7A protects against endothelial dysfunction in type 1 diabetic mice by regulating extracellular superoxide dismutase. Diabetes, 2013, 62(11), 3839-3850.
[http://dx.doi.org/10.2337/db12-1228] [PMID: 23884884]
[112]
Hilário-Souza, E.; Cuillel, M.; Mintz, E.; Charbonnier, P.; Vieyra, A.; Cassio, D.; Lowe, J. Modulation of hepatic copper-ATPase activity by insulin and glucagon involves protein kinase A (PKA) signaling pathway. Biochim. Biophys. Acta Mol. Basis Dis., 2016, 1862(11), 2086-2097.
[http://dx.doi.org/10.1016/j.bbadis.2016.08.008] [PMID: 27523629]
[113]
Huo, S.; Wang, Q.; Shi, W.; Peng, L.; Jiang, Y.; Zhu, M.; Guo, J.; Peng, D.; Wang, M.; Men, L.; Huang, B.; Lv, J.; Lin, L. ATF3/SPI1/SLC31A1 signaling promotes cuproptosis induced by advanced glycosylation end products in diabetic myocardial injury. Int. J. Mol. Sci., 2023, 24(2), 1667.
[http://dx.doi.org/10.3390/ijms24021667] [PMID: 36675183]
[114]
Sanchez-Rangel, E.; Inzucchi, S.E. Metformin: Clinical use in type 2 diabetes. Diabetologia, 2017, 60(9), 1586-1593.
[http://dx.doi.org/10.1007/s00125-017-4336-x] [PMID: 28770321]
[115]
Pryor, R.; Cabreiro, F. Repurposing metformin: An old drug with new tricks in its binding pockets. Biochem. J., 2015, 471(3), 307-322.
[http://dx.doi.org/10.1042/BJ20150497] [PMID: 26475449]
[116]
Fujita, Y.; Inagaki, N. Metformin: Clinical topics and new mechanisms of action. Diabetol. Int., 2017, 8(1), 4-6.
[http://dx.doi.org/10.1007/s13340-016-0300-0] [PMID: 30603300]
[117]
Musi, N.; Hirshman, M.F.; Nygren, J.; Svanfeldt, M.; Bavenholm, P.; Rooyackers, O.; Zhou, G.; Williamson, J.M.; Ljunqvist, O.; Efendic, S.; Moller, D.E.; Thorell, A.; Goodyear, L.J. Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes, 2002, 51(7), 2074-2081.
[http://dx.doi.org/10.2337/diabetes.51.7.2074] [PMID: 12086935]
[118]
Kharechkina, E.S.; Nikiforova, A.B.; Belosludtsev, K.N.; Rokitskaya, T.I.; Antonenko, Y.N.; Kruglov, A.G. Pioglitazone is a mild carrier-dependent uncoupler of oxidative phosphorylation and a modulator of mitochondrial permeability transition. Pharmaceuticals (Basel), 2021, 14(10), 1045.
[http://dx.doi.org/10.3390/ph14101045] [PMID: 34681269]
[119]
Bogacka, I.; Xie, H.; Bray, G.A.; Smith, S.R. Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo. Diabetes, 2005, 54(5), 1392-1399.
[http://dx.doi.org/10.2337/diabetes.54.5.1392] [PMID: 15855325]
[120]
Apostolova, N.; Iannantuoni, F.; Gruevska, A.; Muntane, J.; Rocha, M.; Victor, V.M. Mechanisms of action of metformin in type 2 diabetes: Effects on mitochondria and leukocyte-endothelium interactions. Redox Biol., 2020, 34, 101517.
[http://dx.doi.org/10.1016/j.redox.2020.101517] [PMID: 32535544]
[121]
Quan, X.; Uddin, R.; Heiskanen, A.; Parmvi, M.; Nilson, K.; Donolato, M.; Hansen, M.F.; Rena, G.; Boisen, A. The copper binding properties of metformin – QCM-D, XPS and nanobead agglomeration. Chem. Commun. (Camb.), 2015, 51(97), 17313-17316.
[http://dx.doi.org/10.1039/C5CC04321B] [PMID: 26462973]
[122]
Winter, W.; DeJongh, J.; Post, T.; Ploeger, B.; Urquhart, R.; Moules, I.; Eckland, D.; Danhof, M. A mechanism-based disease progression model for comparison of long-term effects of pioglitazone, metformin and gliclazide on disease processes underlying Type 2 diabetes mellitus. J. Pharmacokinet. Pharmacodyn., 2006, 33(3), 313-343.
[http://dx.doi.org/10.1007/s10928-006-9008-2] [PMID: 16552630]
[123]
Mohibi, S.; Zhang, Y.; Perng, V.; Chen, M.; Zhang, J.; Chen, X. Ferredoxin 1 is essential for embryonic development and lipid homeostasis. eLife, 2024, 13, e91656.
[http://dx.doi.org/10.7554/eLife.91656] [PMID: 38251655]
[124]
Dreishpoon, M.B. FDX1 regulates cellular protein lipoylation through direct binding to LIAS. bioRxiv, 2023, 2023, 2023.02.03.526472.
[http://dx.doi.org/10.1101/2023.02.03.526472]
[125]
Tang, X.; Yan, Z.; Miao, Y.; Ha, W.; Li, Z.; Yang, L.; Mi, D. Copper in cancer: From limiting nutrient to therapeutic target. Front. Oncol., 2023, 13, 1209156.
[http://dx.doi.org/10.3389/fonc.2023.1209156] [PMID: 37427098]
[126]
Zulkifli, M.; Spelbring, A.N.; Zhang, Y.; Soma, S.; Chen, S.; Li, L.; Le, T.; Shanbhag, V.; Petris, M.J.; Chen, T.Y.; Ralle, M.; Barondeau, D.P.; Gohil, V.M. FDX1-dependent and independent mechanisms of elesclomol-mediated intracellular copper delivery. Proc. Natl. Acad. Sci. USA, 2023, 120(10), e2216722120.
[http://dx.doi.org/10.1073/pnas.2216722120] [PMID: 36848556]
[127]
Lu, H.; Liang, J.; He, X.; Ye, H.; Ruan, C.; Shao, H.; Zhang, R.; Li, Y. A novel oncogenic role of fdx1 in human melanoma related to pd-l1 immune checkpoint. Int. J. Mol. Sci., 2023, 24(11), 9182.
[http://dx.doi.org/10.3390/ijms24119182] [PMID: 37298135]
[128]
Qu, J.; Wang, Y.; Wang, Q. Cuproptosis: Potential new direction in diabetes research and treatment. Front. Endocrinol. (Lausanne), 2024, 15, 1344729.
[http://dx.doi.org/10.3389/fendo.2024.1344729] [PMID: 38904034]
[129]
Shen, J.; San, W.; Zheng, Y.; Zhang, S.; Cao, D.; Chen, Y.; Meng, G. Different types of cell death in diabetic endothelial dysfunction. Biomed. Pharmacother., 2023, 168, 115802.
[http://dx.doi.org/10.1016/j.biopha.2023.115802] [PMID: 37918258]
[130]
Chen, Y.; Liao, L.; Wang, B.; Wu, Z. Identification and validation of immune and cuproptosis - Related genes for diabetic nephropathy by WGCNA and machine learning. Front. Immunol., 2024, 15, 1332279.
[http://dx.doi.org/10.3389/fimmu.2024.1332279] [PMID: 38390317]
[131]
Song, J.; Zhu, K.; Wang, H.; Wu, M.; Wu, Y.; Zhang, Q. Deciphering the emerging role of programmed cell death in diabetic wound healing. Int. J. Biol. Sci., 2023, 19(15), 4989-5003.
[http://dx.doi.org/10.7150/ijbs.88461] [PMID: 37781514]
[132]
Cui, X.; Wang, Y.; Liu, H.; Shi, M.; Wang, J.; Wang, Y. The molecular mechanisms of defective copper metabolism in diabetic cardiomyopathy. Oxid. Med. Cell. Longev., 2022, 2022, 1-16.
[http://dx.doi.org/10.1155/2022/5418376] [PMID: 36238639]
[133]
Feng, D.; Zhao, Y.; Li, W.; Li, X.; Wan, J.; Wang, F. Copper neurotoxicity: Induction of cognitive dysfunction: A review. Medicine (Baltimore), 2023, 102(48), e36375.
[http://dx.doi.org/10.1097/MD.0000000000036375] [PMID: 38050287]
[134]
Chen, J.; Yang, X.; Li, W.; Lin, Y.; Lin, R.; Cai, X.; Yan, B.; Xie, B.; Li, J. Potential molecular and cellular mechanisms of the effects of cuproptosis-related genes in the cardiomyocytes of patients with diabetic heart failure: A bioinformatics analysis. Front. Endocrinol. (Lausanne), 2024, 15, 1370387.
[http://dx.doi.org/10.3389/fendo.2024.1370387] [PMID: 38883603]
[135]
Cai, L.; Tan, Y.; Holland, B.; Wintergerst, K. Diabetic Cardiomyopathy and cell death: Focus on metal-mediated cell death. Cardiovasc. Toxicol., 2024, 24(2), 71-84.
[http://dx.doi.org/10.1007/s12012-024-09836-7] [PMID: 38321349]
[136]
Yi, W.J.; Yuan, Y.; Bao, Q.; Zhao, Z.; Ding, H.S.; Song, J. Analyzing immune cell infiltration and copper metabolism in diabetic foot ulcers. J. Inflamm. Res., 2024, 17, 3143-3157.
[http://dx.doi.org/10.2147/JIR.S452609] [PMID: 38774446]
[137]
Yang, J.; Gao, Y.; Mao, H.; Kuang, X.; Tian, F. Qiju Dihuang Pill protects the lens epithelial cells via alleviating cuproptosis in diabetic cataract. J. Ethnopharmacol., 2024, 333, 118444.
[http://dx.doi.org/10.1016/j.jep.2024.118444] [PMID: 38851473]
[138]
Dascalu, A.; Anghelache, A.; Stana, D.; Costea, A.; Nicolae, V.; Tanasescu, D.; Costea, D.; Tribus, L.; Zgura, A.; Serban, D.; Duta, L.; Tudosie, M.; Balasescu, S.; Tanasescu, C.; Tudosie, M. Serum levels of copper and zinc in diabetic retinopathy: Potential new therapeutic targets (Review). Exp. Ther. Med., 2022, 23(5), 324.
[http://dx.doi.org/10.3892/etm.2022.11253] [PMID: 35386624]
[139]
Aloysius Dhivya, M.; Sulochana, K.N.; Bharathi Devi, S.R. High glucose induced inflammation is inhibited by copper chelation via rescuing mitochondrial fusion protein 2 in retinal pigment epithelial cells. Cell. Signal., 2022, 92, 110244.
[http://dx.doi.org/10.1016/j.cellsig.2022.110244] [PMID: 34999205]
[140]
Devi, S.R.B.; Dhivya M, A.; Sulochana, K.N. Copper transporters and chaperones: Their function on angiogenesis and cellular signalling. J. Biosci., 2016, 41(3), 487-496.
[http://dx.doi.org/10.1007/s12038-016-9629-6] [PMID: 27581939]
[141]
Narayanan, G.; R, B.S.; Vuyyuru, H.; Muthuvel, B.; Konerirajapuram Natrajan, S. CTR1 silencing inhibits angiogenesis by limiting copper entry into endothelial cells. PLoS One, 2013, 8(9), e71982.
[http://dx.doi.org/10.1371/journal.pone.0071982] [PMID: 24039729]
[142]
Narayanan, I.G.; Natarajan, S.K. Peptides derived from histidine and methionine‐rich regions of copper transporter 1 exhibit anti‐angiogenic property by chelating extracellular Cu. Chem. Biol. Drug Des., 2018, 91(3), 797-804.
[http://dx.doi.org/10.1111/cbdd.13145] [PMID: 29134764]
[143]
Smirnova, J.; Kabin, E.; Järving, I.; Bragina, O.; Tõugu, V.; Plitz, T.; Palumaa, P. Copper(I)-binding properties of de-coppering drugs for the treatment of Wilson disease. α-Lipoic acid as a potential anti-copper agent. Sci. Rep., 2018, 8(1), 1463.
[http://dx.doi.org/10.1038/s41598-018-19873-2] [PMID: 29362485]
[144]
Ala, A.; Aliu, E.; Schilsky, M.L. Prospective pilot study of a single daily dosage of trientine for the treatment of Wilson disease. Dig. Dis. Sci., 2015, 60(5), 1433-1439.
[http://dx.doi.org/10.1007/s10620-014-3495-6] [PMID: 25605552]
[145]
Squitti, R.; Rossini, P.M.; Cassetta, E.; Moffa, F.; Pasqualetti, P.; Cortesi, M.; Colloca, A.; Rossi, L.; Finazzi-Agró, A. d-penicillamine reduces serum oxidative stress in Alzheimer’s disease patients. Eur. J. Clin. Invest., 2002, 32(1), 51-59.
[http://dx.doi.org/10.1046/j.1365-2362.2002.00933.x] [PMID: 11851727]
[146]
Pan, Q.; Kleer, C.G.; van Golen, K.L.; Irani, J.; Bottema, K.M.; Bias, C.; De Carvalho, M.; Mesri, E.A.; Robins, D.M.; Dick, R.D.; Brewer, G.J.; Merajver, S.D. Copper deficiency induced by tetrathiomolybdate suppresses tumor growth and angiogenesis. Cancer Res., 2002, 62(17), 4854-4859.
[PMID: 12208730]
[147]
Brady, D.C.; Crowe, M.S.; Greenberg, D.N.; Counter, C.M. Copper chelation inhibits BRAFV600E-Driven melanomagenesis and counters resistance to BRAFV600E and MEK1/2 inhibitors. Cancer Res., 2017, 77(22), 6240-6252.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1190] [PMID: 28986383]
[148]
Sammons, S.; Brady, D.; Vahdat, L.; Salama, A.K.S. Copper suppression as cancer therapy: The rationale for copper chelating agents in BRAFV600 mutated melanoma. Melanoma Manag., 2016, 3(3), 207-216.
[http://dx.doi.org/10.2217/mmt-2015-0005] [PMID: 30190890]
[149]
Xu, M.; Casio, M.; Range, D.E.; Sosa, J.A.; Counter, C.M. Copper chelation as targeted therapy in a mouse model of oncogenic braf-driven papillary thyroid cancer. Clin. Cancer Res., 2018, 24(17), 4271-4281.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-3705] [PMID: 30065097]
[150]
Baldari, S.; Di Rocco, G.; Heffern, M.C.; Su, T.A.; Chang, C.J.; Toietta, G. effects of copper chelation on BRAFv600e positive colon carcinoma cells. Cancers (Basel), 2019, 11(5), 659.
[http://dx.doi.org/10.3390/cancers11050659] [PMID: 31083627]
[151]
Cox, C.; Merajver, S.D.; Yoo, S.; Dick, R.D.; Brewer, G.J.; Lee, J.S.J.; Teknos, T.N. Inhibition of the growth of squamous cell carcinoma by tetrathiomolybdate-induced copper suppression in a murine model. Arch. Otolaryngol. Head Neck Surg., 2003, 129(7), 781-785.
[http://dx.doi.org/10.1001/archotol.129.7.781] [PMID: 12874082]
[152]
Juarez, J.C.; Betancourt, O., Jr; Pirie-Shepherd, S.R.; Guan, X.; Price, M.L.; Shaw, D.E.; Mazar, A.P.; Doñate, F. Copper binding by tetrathiomolybdate attenuates angiogenesis and tumor cell proliferation through the inhibition of superoxide dismutase 1. Clin. Cancer Res., 2006, 12(16), 4974-4982.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-0171] [PMID: 16914587]
[153]
Khan, M.K.; Mamou, F.; Schipper, M.J.; May, K.S.; Kwitny, A.; Warnat, A.; Bolton, B.; Nair, B.M.; Kariapper, M.S.T.; Miller, M.; Brewer, G.; Normolle, D.; Merajver, S.D.; Teknos, T.N. Combination tetrathiomolybdate and radiation therapy in a mouse model of head and neck squamous cell carcinoma. Arch. Otolaryngol. Head Neck Surg., 2006, 132(3), 333-338.
[http://dx.doi.org/10.1001/archotol.132.3.333] [PMID: 16549755]
[154]
Aghamiri, S.; Jafarpour, A.; Shoja, M. Retracted: Effects of silver nanoparticles coated with anti‐HER2 on irradiation efficiency of SKBR3 breast cancer cells. IET Nanobiotechnol., 2019, 13(8), 808-815.
[http://dx.doi.org/10.1049/iet-nbt.2018.5258] [PMID: 31625520]
[155]
Kim, K.K.; Han, A.; Yano, N.; Ribeiro, J.R.; Lokich, E.; Singh, R.K.; Moore, R.G. Tetrathiomolybdate mediates cisplatin-induced p38 signaling and EGFR degradation and enhances response to cisplatin therapy in gynecologic cancers. Sci. Rep., 2015, 5(1), 15911.
[http://dx.doi.org/10.1038/srep15911] [PMID: 26568478]
[156]
Yoo, J.Y.; Yu, J.G.; Kaka, A.; Pan, Q.; Kumar, P.; Kumar, B.; Zhang, J.; Mazar, A.; Teknos, T.N.; Kaur, B.; Old, M.O. ATN-224 enhances antitumor efficacy of oncolytic herpes virus against both local and metastatic head and neck squamous cell carcinoma. Mol. Ther. Oncolytics, 2015, 2, 15008.
[http://dx.doi.org/10.1038/mto.2015.8] [PMID: 27119105]
[157]
Morisawa, A.; Okui, T.; Shimo, T.; Ibaragi, S.; Okusha, Y.; Ono, M.; Nguyen, T.T.; Hassan, N.M.; Sasaki, A. Ammonium tetrathiomolybdate enhances the antitumor effects of cetuximab via the suppression of osteoclastogenesis in head and neck squamous carcinoma. Int. J. Oncol., 2018, 52(3), 989-999.
[http://dx.doi.org/10.3892/ijo.2018.4242] [PMID: 29328370]
[158]
Calderon-Aparicio, A.; Cornejo, A.; Orue, A.; Rieber, M. Anticancer response to disulfiram may be enhanced by co-treatment with MEK inhibitor or oxaliplatin: modulation by tetrathiomolybdate, KRAS/BRAF mutations and c-MYC/p53 status. Ecancermedicalscience, 2019, 13, 890.
[http://dx.doi.org/10.3332/ecancer.2019.890] [PMID: 30792807]
[159]
Yoshii, J.; Yoshiji, H.; Kuriyama, S.; Ikenaka, Y.; Noguchi, R.; Okuda, H.; Tsujinoue, H.; Nakatani, T.; Kishida, H.; Nakae, D.; Gomez, D.E.; De Lorenzo, M.S.; Tejera, A.M.; Fukui, H. The copper-chelating agent, trientine, suppresses tumor development and angiogenesis in the murine hepatocellular carcinoma cells. Int. J. Cancer, 2001, 94(6), 768-773.
[http://dx.doi.org/10.1002/ijc.1537] [PMID: 11745476]
[160]
Brem, S.S.; Zagzag, D.; Tsanaclis, A.M.; Gately, S.; Elkouby, M.P.; Brien, S.E. Inhibition of angiogenesis and tumor growth in the brain. Suppression of endothelial cell turnover by penicillamine and the depletion of copper, an angiogenic cofactor. Am. J. Pathol., 1990, 137(5), 1121-1142.
[PMID: 1700617]
[161]
Crowe, A.; Jackaman, C.; Beddoes, K.M.; Ricciardo, B.; Nelson, D.J. Rapid copper acquisition by developing murine mesothelioma: Decreasing bioavailable copper slows tumor growth, normalizes vessels and promotes T cell infiltration. PLoS One, 2013, 8(8), e73684.
[http://dx.doi.org/10.1371/journal.pone.0073684] [PMID: 24013775]
[162]
Yu, Z.; Zhou, R.; Zhao, Y.; Pan, Y.; Liang, H.; Zhang, J.S.; Tai, S.; Jin, L.; Teng, C.B. Blockage of SLC31A1‐Dependent copper absorption increases pancreatic cancer cell autophagy to resist cell death. Cell Prolif., 2019, 52(2), e12568.
[http://dx.doi.org/10.1111/cpr.12568] [PMID: 30706544]
[163]
Brewer, G.J.; Dick, R.D.; Grover, D.K.; LeClaire, V.; Tseng, M.; Wicha, M.; Pienta, K.; Redman, B.G.; Jahan, T.; Sondak, V.K.; Strawderman, M.; LeCarpentier, G.; Merajver, S.D. Treatment of metastatic cancer with tetrathiomolybdate, an anticopper, antiangiogenic agent: Phase I study. Clin. Cancer Res., 2000, 6(1), 1-10.
[PMID: 10656425]
[164]
Redman, B.G.; Esper, P.; Pan, Q.; Dunn, R.L.; Hussain, H.K.; Chenevert, T.; Brewer, G.J.; Merajver, S.D. Phase II trial of tetrathiomolybdate in patients with advanced kidney cancer. Clin. Cancer Res., 2003, 9(5), 1666-1672.
[PMID: 12738719]
[165]
Jain, S.; Cohen, J.; Ward, M.M.; Kornhauser, N.; Chuang, E.; Cigler, T.; Moore, A.; Donovan, D.; Lam, C.; Cobham, M.V.; Schneider, S.; Hurtado Rúa, S.M.; Benkert, S.; Mathijsen Greenwood, C.; Zelkowitz, R.; Warren, J.D.; Lane, M.E.; Mittal, V.; Rafii, S.; Vahdat, L.T. Tetrathiomolybdate-associated copper depletion decreases circulating endothelial progenitor cells in women with breast cancer at high risk of relapse. Ann. Oncol., 2013, 24(6), 1491-1498.
[http://dx.doi.org/10.1093/annonc/mds654] [PMID: 23406736]
[166]
Henry, N.L.; Dunn, R.; Merjaver, S.; Pan, Q.; Pienta, K.J.; Brewer, G.; Smith, D.C. Phase II trial of copper depletion with tetrathiomolybdate as an antiangiogenesis strategy in patients with hormone-refractory prostate cancer. Oncology, 2006, 71(3-4), 168-175.
[http://dx.doi.org/10.1159/000106066] [PMID: 17641535]
[167]
Pass, H.I.; Brewer, G.J.; Dick, R.; Carbone, M.; Merajver, S. A phase II trial of tetrathiomolybdate after surgery for malignant mesothelioma: final results. Ann. Thorac. Surg., 2008, 86(2), 383-390.
[http://dx.doi.org/10.1016/j.athoracsur.2008.03.016] [PMID: 18640301]
[168]
Schneider, B.J.; Lee, J.S.J.; Hayman, J.A.; Chang, A.C.; Orringer, M.B.; Pickens, A.; Pan, C.C.; Merajver, S.D.; Urba, S.G. Pre-operative chemoradiation followed by post-operative adjuvant therapy with tetrathiomolybdate, a novel copper chelator, for patients with resectable esophageal cancer. Invest. New Drugs, 2013, 31(2), 435-442.
[http://dx.doi.org/10.1007/s10637-012-9864-0] [PMID: 22847786]
[169]
Gartner, E.M.; Griffith, K.A.; Pan, Q.; Brewer, G.J.; Henja, G.F.; Merajver, S.D.; Zalupski, M.M. A pilot trial of the anti-angiogenic copper lowering agent tetrathiomolybdate in combination with irinotecan, 5-flurouracil, and leucovorin for metastatic colorectal cancer. Invest. New Drugs, 2009, 27(2), 159-165.
[http://dx.doi.org/10.1007/s10637-008-9165-9] [PMID: 18712502]
[170]
Fu, S.; Naing, A.; Fu, C.; Kuo, M.T.; Kurzrock, R. Overcoming platinum resistance through the use of a copper-lowering agent. Mol. Cancer Ther., 2012, 11(6), 1221-1225.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0864] [PMID: 22491798]
[171]
Fu, S.; Hou, M.M.; Wheler, J.; Hong, D.; Naing, A.; Tsimberidou, A.; Janku, F.; Zinner, R.; Piha-Paul, S.; Falchook, G.; Kuo, M.T.; Kurzrock, R. Exploratory study of carboplatin plus the copper-lowering agent trientine in patients with advanced malignancies. Invest. New Drugs, 2014, 32(3), 465-472.
[http://dx.doi.org/10.1007/s10637-013-0051-8] [PMID: 24306314]
[172]
Huang, Y.F.; Kuo, M.T.; Liu, Y.S.; Cheng, Y.M.; Wu, P.Y.; Chou, C.Y. A dose escalation study of trientine plus carboplatin and pegylated liposomal doxorubicin in women with a first relapse of epithelial ovarian, tubal, and peritoneal cancer within 12 months after platinum-based chemotherapy. Front. Oncol., 2019, 9, 437.
[http://dx.doi.org/10.3389/fonc.2019.00437] [PMID: 31179244]
[173]
Brem, S.; Grossman, S.A.; Carson, K.A.; New, P.; Phuphanich, S.; Alavi, J.B.; Mikkelsen, T.; Fisher, J.D. Phase 2 trial of copper depletion and penicillamine as antiangiogenesis therapy of glioblastoma. Neuro-oncol., 2005, 7(3), 246-253.
[http://dx.doi.org/10.1215/S1152851704000869] [PMID: 16053699]
[174]
Lowndes, S.A.; Adams, A.; Timms, A.; Fisher, N.; Smythe, J.; Watt, S.M.; Joel, S.; Donate, F.; Hayward, C.; Reich, S.; Middleton, M.; Mazar, A.; Harris, A.L. Phase I study of copper-binding agent ATN-224 in patients with advanced solid tumors. Clin. Cancer Res., 2008, 14(22), 7526-7534.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0315] [PMID: 19010871]
[175]
Lin, J.; Zahurak, M.; Beer, T.M.; Ryan, C.J.; Wilding, G.; Mathew, P.; Morris, M.; Callahan, J.A.; Gordon, G.; Reich, S.D.; Carducci, M.A.; Antonarakis, E.S. A non-comparative randomized phase II study of 2 doses of ATN-224, a copper/zinc superoxide dismutase inhibitor, in patients with biochemically recurrent hormone-naïve prostate cancer. Urol. Oncol., 2013, 31(5), 581-588.
[http://dx.doi.org/10.1016/j.urolonc.2011.04.009] [PMID: 21816640]
[176]
Excelsior. A Retrospective Study to Assess the Clinical Efficacy and Safety of Trientine in Wilson's Disease Patients. NCT03299829, 2020.
[177]
Safety Study of Tetrathiomolybdate in Patients With Idiopathic Pulmonary Fibrosis. NCT00189176.
[178]
University of British Columbia. Trientine Hydrochloride for the Prevention of Macular Edema After Cataract Surgery in Patients With Type 2 Diabetes Mellitus NCT01295073, 2018.
[179]
University of British Columbia. Trientine Hydrochloride for the Prevention of Macular Edema Associated with Pan-retinal Photocoagulation for Severe Non-proliferative and Proliferative Diabetic Retinopathy. NCT01213888, 2013.
[180]
Duke University. A Pilot Study of Trientine with Vemurafenib for the Treatment BRAF Mutated Metastatic Melanoma. NCT02068079, 2015.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy