Generic placeholder image

Current Vascular Pharmacology

Editor-in-Chief

ISSN (Print): 1570-1611
ISSN (Online): 1875-6212

Review Article

Delineating the NOX-Mediated Promising Therapeutic Strategies for the Management of Various Cardiovascular Disorders: A Comprehensive Review

Author(s): Rohit Kumar Upadhyay, Kuldeep Kumar, Vishal Kumar Vishwakarma, Nirmal Singh, Rajiv Narang, Neeraj Parakh, Mayank Yadav, Sangeeta Yadav, Sachin Kumar, Ahsas Goyal and Harlokesh Narayan Yadav*

Volume 23, Issue 1, 2025

Published on: 20 September, 2024

Page: [12 - 30] Pages: 19

DOI: 10.2174/0115701611308870240910115023

Price: $65

Abstract

Cardiovascular disorders (CVDs) are reported to occur with very high rates of incidence and exhibit high morbidity and mortality rates across the globe. Therefore, research is focused on searching for novel therapeutic targets involving multiple pathophysiological mechanisms. Oxidative stress plays a critical role in the development and progression of various CVDs, such as hypertension, pulmonary hypertension, heart failure, arrhythmia, atherosclerosis, ischemia- reperfusion injury, and myocardial infarction. Among multiple pathways generating reactive oxygen species (ROS), Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases of the NOX family as the major source of ROS generation and plays an intricate role in the development and progression of CVDs. Therefore, exploring the role of different NADPH oxidase isoforms in various cardiovascular pathologies has attracted attention to current cardiovascular research. Focusing on NADPH oxidases to reduce oxidative stress in managing diverse CVDs may offer unique therapeutic approaches to prevent and treat various heart conditions. The current review article highlights the role of different NADPH oxidase isoforms in the pathophysiology of various CVDs. Moreover, the focus is also to emphasize different experimental studies that utilized various NADPH oxidase isoform modulators to manage other disorders. The present review article considers new avenues for researchers/scientists working in the field of cardiovascular pharmacology utilizing NADPH oxidase isoform modulators.

Keywords: Cardiovascular disorders, NADPH oxidase, oxidative stress, reactive oxygen species, reactive nitrogen species, pulmonary hypertension.

Graphical Abstract
[1]
Frąk W, Wojtasińska A, Lisińska W, Młynarska E, Franczyk B, Rysz J. Pathophysiology of cardiovascular diseases: New insights into molecular mechanisms of atherosclerosis, arterial hypertension, and coronary artery disease. Biomedicines 2022; 10(8): 1938.
[http://dx.doi.org/10.3390/biomedicines10081938] [PMID: 36009488]
[2]
Senoner T, Dichtl W. Oxidative stress in cardiovascular diseases: Still a therapeutic target? Nutrients 2019; 11(9): 2090.
[http://dx.doi.org/10.3390/nu11092090] [PMID: 31487802]
[3]
Skonieczna M, Hejmo T, Poterala-Hejmo A, Cieslar-Pobuda A, Buldak RJ. NADPH oxidases: Insights into selected functions and mechanisms of action in cancer and stem cells. Oxid Med Cell Longev 2017; 2017(1): 9420539.
[http://dx.doi.org/10.1155/2017/9420539] [PMID: 28626501]
[4]
Nguyen Dinh Cat A, Montezano AC, Burger D, Touyz RM, Angiotensin II. Angiotensin II, NADPH oxidase, and redox signaling in the vasculature. Antioxid Redox Signal 2013; 19(10): 1110-20.
[http://dx.doi.org/10.1089/ars.2012.4641] [PMID: 22530599]
[5]
Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiol Rev 2007; 87(1): 245-313.
[http://dx.doi.org/10.1152/physrev.00044.2005] [PMID: 17237347]
[6]
Roy K, Wu Y, Meitzler JL, Juhasz A, Liu H, Jiang G. NADPH oxidases and cancer. Clin Sci Lond Engl 1979 2015; 182(12): 863-75.
[http://dx.doi.org/10.1042/CS20140542]
[7]
Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 2004; 4(3): 181-9.
[http://dx.doi.org/10.1038/nri1312] [PMID: 15039755]
[8]
Zhang M, Perino A, Ghigo A, Hirsch E, Shah AM. NADPH oxidases in heart failure: Poachers or gamekeepers? Antioxid Redox Signal 2013; 18(9): 1024-41.
[http://dx.doi.org/10.1089/ars.2012.4550] [PMID: 22747566]
[9]
Sahoo S, Meijles DN, Pagano PJ. NADPH oxidases in heart failure: Poachers or gamekeepers? Clin Sci Lond Engl 1979 2016; 130(5): 317-5.
[http://dx.doi.org/10.1042/CS20150087]
[10]
Brandes RP, Schröder K. Differential vascular functions of Nox family NADPH oxidases. Curr Opin Lipidol 2008; 19(5): 513-8.
[http://dx.doi.org/10.1097/MOL.0b013e32830c91e3] [PMID: 18769233]
[11]
Leto TL, Morand S, Hurt D, Ueyama T. Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases. Antioxid Redox Signal 2009; 11(10): 2607-19.
[http://dx.doi.org/10.1089/ars.2009.2637] [PMID: 19438290]
[12]
Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 2014; 20(7): 1126-67.
[http://dx.doi.org/10.1089/ars.2012.5149] [PMID: 23991888]
[13]
Lassègue B, Clempus RE. Vascular NAD(P)H oxidases: Specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol 2003; 285(2): R277-97.
[http://dx.doi.org/10.1152/ajpregu.00758.2002] [PMID: 12855411]
[14]
Brandes RP. Role of NADPH oxidases in the control of vascular gene expression. Antioxid Redox Signal 2003; 5(6): 803-11.
[http://dx.doi.org/10.1089/152308603770380115] [PMID: 14588154]
[15]
Petry A, Djordjevic T, Weitnauer M, Kietzmann T, Hess J, Görlach A. NOX2 and NOX4 mediate proliferative response in endothelial cells. Antioxid Redox Signal 2006; 8(9-10): 1473-84.
[http://dx.doi.org/10.1089/ars.2006.8.1473] [PMID: 16987004]
[16]
Suh YA, Arnold RS, Lassegue B, et al. Cell transformation by the superoxide-generating oxidase Mox1. Nature 1999; 401(6748): 79-82.
[http://dx.doi.org/10.1038/43459] [PMID: 10485709]
[17]
Di Wang H, Hope S, Du Y, Quinn MT, Cayatte A, Pagano PJ. Paracrine role of adventitial superoxide anion in mediating spontaneous tone of the isolated rat aorta in angiotensin II-induced hypertension. Hypertens Dallas Tex 1979 1999; 33(5): 1225-32.
[18]
Pagano PJ, Clark JK, Cifuentes-Pagano ME, Clark SM, Callis GM, Quinn MT. Localization of a constitutively active, phagocyte-like NADPH oxidase in rabbit aortic adventitia: Enhancement by angiotensin II. Proc Natl Acad Sci USA 1997; 94(26): 14483-8.
[http://dx.doi.org/10.1073/pnas.94.26.14483] [PMID: 9405639]
[19]
Bánfi B, Molnár G, Maturana A, et al. A Ca(2+)-activated NADPH oxidase in testis, spleen, and lymph nodes. J Biol Chem 2001; 276(40): 37594-601.
[http://dx.doi.org/10.1074/jbc.M103034200] [PMID: 11483596]
[20]
Cave AC, Brewer AC, Narayanapanicker A, et al. NADPH oxidases in cardiovascular health and disease. Antioxid Redox Signal 2006; 8(5-6): 691-728.
[http://dx.doi.org/10.1089/ars.2006.8.691] [PMID: 16771662]
[21]
Warburg O. Beobachtungen über die Oxydationsprozesse im Seeigelei 1908; 57(1–2): 1-16.
[22]
Baldridge CW, Gerard RW. The extra respiration of phagocytosis. Am J Physiol 1932; 103(1): 235-6.
[http://dx.doi.org/10.1152/ajplegacy.1932.103.1.235]
[23]
Sbarra AJ, Karnovsky ML. The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. J Biol Chem 1959; 234(6): 1355-62.
[http://dx.doi.org/10.1016/S0021-9258(18)70011-2] [PMID: 13654378]
[24]
Iyer GYN, Islam MF, Quastel JH. Biochemical aspects of phagocytosis. Nature 1961; 192(4802): 535-41.
[http://dx.doi.org/10.1038/192535a0]
[25]
Rossi F, Zatti M. Biochemical aspects of phagocytosis in polymorphonuclear leucocytes. NADH and NADPH oxidation by the granules of resting and phagocytizing cells. Experientia 1964; 20(1): 21-3.
[http://dx.doi.org/10.1007/BF02146019] [PMID: 4379032]
[26]
Rossi F, Zatti M. Changes in the metabolic pattern of polymorpho-nuclear leucocytes during phagocytosis. Br J Exp Pathol 1964; 45(5): 548-59.
[PMID: 14213063]
[27]
Quie PG, White JG, Holmes B, Good RA. In vitro bactericidal capacity of human polymorphonuclear leukocytes: Diminished activity in chronic granulomatous disease of childhood. J Clin Invest 1967; 46(4): 668-79.
[http://dx.doi.org/10.1172/JCI105568] [PMID: 6021213]
[28]
Baehner RL, Nathan DG. Leukocyte oxidase: Defective activity in chronic granulomatous disease. Science 1967; 155(3764): 835-6.
[http://dx.doi.org/10.1126/science.155.3764.835] [PMID: 6018195]
[29]
Holmes B, Page AR, Good RA. Studies of the metabolic activity of leukocytes from patients with a genetic abnormality of phagocytic function. J Clin Invest 1967; 46(9): 1422-32.
[http://dx.doi.org/10.1172/JCI105634] [PMID: 6036538]
[30]
Babior BM, Kipnes RS, Curnutte JT. Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest 1973; 52(3): 741-4.
[http://dx.doi.org/10.1172/JCI107236] [PMID: 4346473]
[31]
Klebanoff SJ. Antimicrobial mechanisms in neutrophilic polymorphonuclear leukocytes. Semin Hematol 1975; 12(2): 117-42.
[PMID: 1118738]
[32]
Babior BM. Oxygen-dependent microbial killing by phagocytes (first of two parts). N Engl J Med 1978; 298(12): 659-68.
[http://dx.doi.org/10.1056/NEJM197803232981205] [PMID: 24176]
[33]
Segal AW, Jones OTG. Novel cytochrome b system in phagocytic vacuoles of human granulocytes. Nature 1978; 276(5687): 515-7.
[http://dx.doi.org/10.1038/276515a0] [PMID: 723935]
[34]
Cross AR, Parkinson JF, Jones OTG. The superoxide-generating oxidase of leucocytes. NADPH-dependent reduction of flavin and cytochrome b in solubilized preparations. Biochem J 1984; 223(2): 337-44.
[http://dx.doi.org/10.1042/bj2230337] [PMID: 6497852]
[35]
Dinauer MC, Orkin SH, Brown R, Jesaitis AJ, Parkos CA. The glycoprotein encoded by the X-linked chronic granulomatous disease locus is a component of the neutrophil cytochrome b complex. Nature 1987; 327(6124): 717-20.
[http://dx.doi.org/10.1038/327717a0] [PMID: 3600768]
[36]
Parkos CA, Allen RA, Cochrane CG, Jesaitis AJ. Purified cytochrome b from human granulocyte plasma membrane is comprised of two polypeptides with relative molecular weights of 91,000 and 22,000. J Clin Invest 1987; 80(3): 732-42.
[http://dx.doi.org/10.1172/JCI113128] [PMID: 3305576]
[37]
Teahan C, Rowe P, Parker P, Totty N, Segal AW. The X-linked chronic granulomatous disease gene codes for the β-chain of cytochrome b−245. Nature 1987; 327(6124): 720-1.
[http://dx.doi.org/10.1038/327720a0] [PMID: 3600769]
[38]
Groom QJ, Torres MA, Fordham-Skelton AP, Hammond-Kosack KE, Robinson NJ, Jones JDG. rbohA, a rice homologue of the mammalian gp91phox respiratory burst oxidase gene. Plant J 1996; 10(3): 515-22.
[http://dx.doi.org/10.1046/j.1365-313X.1996.10030515.x] [PMID: 8811865]
[39]
Dupuy C, Ohayon R, Valent A, Noël-Hudson MS, Dème D, Virion A. Purification of a novel flavoprotein involved in the thyroid NADPH oxidase. Cloning of the porcine and human cdnas. J Biol Chem 1999; 274(52): 37265-9.
[http://dx.doi.org/10.1074/jbc.274.52.37265] [PMID: 10601291]
[40]
De Deken X, Wang D, Many MC, et al. Cloning of two human thyroid cDNAs encoding new members of the NADPH oxidase family. J Biol Chem 2000; 275(30): 23227-33.
[http://dx.doi.org/10.1074/jbc.M000916200] [PMID: 10806195]
[41]
Hajjar C, Cherrier MV, Dias Mirandela G, et al. The NOX family of proteins is also present in bacteria. MBio 2017; 8(6): e01487-17.
[http://dx.doi.org/10.1128/mBio.01487-17] [PMID: 29114025]
[42]
Magnani F, Nenci S, Millana Fananas E, et al. Crystal structures and atomic model of NADPH oxidase. Proc Natl Acad Sci USA 2017; 114(26): 6764-9.
[http://dx.doi.org/10.1073/pnas.1702293114] [PMID: 28607049]
[43]
Vermot A, Petit-Härtlein I, Smith SME, Fieschi F. NADPH oxidases (NOX): An overview from discovery, molecular mechanisms to physiology and pathology. Antioxidants 2021; 10(6): 890.
[http://dx.doi.org/10.3390/antiox10060890] [PMID: 34205998]
[44]
Bánfi B, Maturana A, Jaconi S, et al. A mammalian H+ channel generated through alternative splicing of the NADPH oxidase homolog NOH-1. Science 2000; 287(5450): 138-42.
[http://dx.doi.org/10.1126/science.287.5450.138] [PMID: 10615049]
[45]
Helmcke I, Heumüller S, Tikkanen R, Schröder K, Brandes RP. Identification of structural elements in Nox1 and Nox4 controlling localization and activity. Antioxid Redox Signal 2009; 11(6): 1279-87.
[http://dx.doi.org/10.1089/ars.2008.2383] [PMID: 19061439]
[46]
Cheng G, Lambeth JD. NOXO1, regulation of lipid binding, localization, and activation of Nox1 by the Phox homology (PX) domain. J Biol Chem 2004; 279(6): 4737-42.
[http://dx.doi.org/10.1074/jbc.M305968200] [PMID: 14617635]
[47]
Hilenski LL, Clempus RE, Quinn MT, Lambeth JD, Griendling KK. Distinct subcellular localizations of Nox1 and Nox4 in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2004; 24(4): 677-83.
[http://dx.doi.org/10.1161/01.ATV.0000112024.13727.2c] [PMID: 14670934]
[48]
Ambasta RK, Kumar P, Griendling KK, Schmidt HHHW, Busse R, Brandes RP. Direct interaction of the novel Nox proteins with p22phox is required for the formation of a functionally active NADPH oxidase. J Biol Chem 2004; 279(44): 45935-41.
[http://dx.doi.org/10.1074/jbc.M406486200] [PMID: 15322091]
[49]
Chamulitrat W, Schmidt R, Tomakidi P, et al. Association of gp91phox homolog Nox1 with anchorage-independent growth and MAP kinase-activation of transformed human keratinocytes. Oncogene 2003; 22(38): 6045-53.
[http://dx.doi.org/10.1038/sj.onc.1206654] [PMID: 12955083]
[50]
Desouki MM, Kulawiec M, Bansal S, Das GC, Singh KK. Cross talk between mitochondria and superoxide generating NADPH oxidase in breast and ovarian tumors. Cancer Biol Ther 2005; 4(12): 1367-73.
[http://dx.doi.org/10.4161/cbt.4.12.2233] [PMID: 16294028]
[51]
Arbiser JL, Petros J, Klafter R, et al. Reactive oxygen generated by Nox1 triggers the angiogenic switch. Proc Natl Acad Sci USA 2002; 99(2): 715-20.
[http://dx.doi.org/10.1073/pnas.022630199] [PMID: 11805326]
[52]
Cifuentes ME, Pagano PJ. Targeting reactive oxygen species in hypertension. Curr Opin Nephrol Hypertens 2006; 15(2): 179-86.
[http://dx.doi.org/10.1097/01.mnh.0000214776.19233.68] [PMID: 16481886]
[53]
Nauseef WM. Nox enzymes in immune cells. Semin Immunopathol 2008; 30(3): 195-208.
[http://dx.doi.org/10.1007/s00281-008-0117-4] [PMID: 18449540]
[54]
Guzik TJ, Sadowski J, Guzik B, et al. Coronary artery superoxide production and nox isoform expression in human coronary artery disease. Arterioscler Thromb Vasc Biol 2006; 26(2): 333-9.
[http://dx.doi.org/10.1161/01.ATV.0000196651.64776.51] [PMID: 16293794]
[55]
Guzik TJ, Sadowski J, Kapelak B, et al. Systemic regulation of vascular NAD(P)H oxidase activity and nox isoform expression in human arteries and veins. Arterioscler Thromb Vasc Biol 2004; 24(9): 1614-20.
[http://dx.doi.org/10.1161/01.ATV.0000139011.94634.9d] [PMID: 15256399]
[56]
Infanger DW, Sharma RV, Davisson RL. NADPH oxidases of the brain: Distribution, regulation, and function. Antioxid Redox Signal 2006; 8(9-10): 1583-96.
[http://dx.doi.org/10.1089/ars.2006.8.1583] [PMID: 16987013]
[57]
Buul JDV, Fernandez-Borja M, Anthony EC, Hordijk PL. Expression and localization of NOX2 and NOX4 in primary human endothelial cells. Antioxid Redox Signal 2005; 7(3-4): 308-17.
[http://dx.doi.org/10.1089/ars.2005.7.308] [PMID: 15706079]
[58]
Paravicini TM, Touyz RM. NADPH oxidases, reactive oxygen species, and hypertension: Clinical implications and therapeutic possibilities. Diabetes Care 2008; 31 (Suppl. 2): S170-80.
[http://dx.doi.org/10.2337/dc08-s247] [PMID: 18227481]
[59]
Borregaard N, Heiple JM, Simons ER, Clark RA. Subcellular localization of the b-cytochrome component of the human neutrophil microbicidal oxidase: Translocation during activation. J Cell Biol 1983; 97(1): 52-61.
[http://dx.doi.org/10.1083/jcb.97.1.52] [PMID: 6408102]
[60]
Kawano M, Miyamoto K, Kaito Y, Sumimoto H, Tamura M. Noxa1 as a moderate activator of Nox2-based NADPH oxidase. Arch Biochem Biophys 2012; 519(1): 1-7.
[http://dx.doi.org/10.1016/j.abb.2011.12.025] [PMID: 22244833]
[61]
Ushio-Fukai M, Zafari AM, Fukui T, Ishizaka N, Griendling KK. p22phox is a critical component of the superoxide-generating NADH/NADPH oxidase system and regulates angiotensin II-induced hypertrophy in vascular smooth muscle cells. J Biol Chem 1996; 271(38): 23317-21.
[http://dx.doi.org/10.1074/jbc.271.38.23317] [PMID: 8798532]
[62]
Geiszt M, Kopp JB, Várnai P, Leto TL. Identification of renox, an NAD(P)H oxidase in kidney. Proc Natl Acad Sci USA 2000; 97(14): 8010-4.
[http://dx.doi.org/10.1073/pnas.130135897] [PMID: 10869423]
[63]
Goettsch C, Goettsch W, Arsov A, Hofbauer LC, Bornstein SR, Morawietz H. Long-term cyclic strain downregulates endothelial Nox4. Antioxid Redox Signal 2009; 11(10): 2385-97.
[http://dx.doi.org/10.1089/ars.2009.2561] [PMID: 19309265]
[64]
Goettsch C, Goettsch W, Muller G, Seebach J, Schnittler HJ, Morawietz H. Nox4 overexpression activates reactive oxygen species and p38 MAPK in human endothelial cells. Biochem Biophys Res Commun 2009; 380(2): 355-60.
[http://dx.doi.org/10.1016/j.bbrc.2009.01.107] [PMID: 19280689]
[65]
Sorescu D, Weiss D, Lassègue B, et al. Superoxide production and expression of nox family proteins in human atherosclerosis. Circulation 2002; 105(12): 1429-35.
[http://dx.doi.org/10.1161/01.CIR.0000012917.74432.66] [PMID: 11914250]
[66]
Pedruzzi E, Guichard C, Ollivier V, et al. NAD(P)H oxidase Nox-4 mediates 7-ketocholesterol-induced endoplasmic reticulum stress and apoptosis in human aortic smooth muscle cells. Mol Cell Biol 2004; 24(24): 10703-17.
[http://dx.doi.org/10.1128/MCB.24.24.10703-10717.2004] [PMID: 15572675]
[67]
Schröder K, Zhang M, Benkhoff S, et al. Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase. Circ Res 2012; 110(9): 1217-25.
[http://dx.doi.org/10.1161/CIRCRESAHA.112.267054] [PMID: 22456182]
[68]
Gorin Y, Ricono JM, Kim NH, Bhandari B, Choudhury GG, Abboud HE. Nox4 mediates angiotensin II-induced activation of Akt/protein kinase B in mesangial cells. Am J Physiol Renal Physiol 2003; 285(2): F219-29.
[http://dx.doi.org/10.1152/ajprenal.00414.2002] [PMID: 12842860]
[69]
Mahadev K, Motoshima H, Wu X, Ruddy JM, Arnold RS, Cheng G. The NAD(P)H oxidase homolog Nox4 modulates insulin-stimulated generation of H2O2 and plays an integral role in insulin signal transduction. Mol Cell Biol 2004; 24(5): 1844-54.
[70]
Lee YM, Kim BJ, Chun YS, et al. NOX4 as an oxygen sensor to regulate TASK-1 activity. Cell Signal 2006; 18(4): 499-507.
[http://dx.doi.org/10.1016/j.cellsig.2005.05.025] [PMID: 16019190]
[71]
Sturrock A, Cahill B, Norman K, et al. Transforming growth factor-β1 induces Nox4 NAD(P)H oxidase and reactive oxygen species-dependent proliferation in human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2006; 290(4): L661-73.
[http://dx.doi.org/10.1152/ajplung.00269.2005] [PMID: 16227320]
[72]
Li J, Stouffs M, Serrander L, et al. The NADPH oxidase NOX4 drives cardiac differentiation: Role in regulating cardiac transcription factors and MAP kinase activation. Mol Biol Cell 2006; 17(9): 3978-88.
[http://dx.doi.org/10.1091/mbc.e05-06-0532] [PMID: 16775014]
[73]
Kuroda J, Nakagawa K, Yamasaki T, et al. The superoxide-producing NAD(P)H oxidase Nox4 in the nucleus of human vascular endothelial cells. Genes Cells 2005; 10(12): 1139-51.
[http://dx.doi.org/10.1111/j.1365-2443.2005.00907.x] [PMID: 16324151]
[74]
Clempus RE, Sorescu D, Dikalova AE, et al. Nox4 is required for maintenance of the differentiated vascular smooth muscle cell phenotype. Arterioscler Thromb Vasc Biol 2007; 27(1): 42-8.
[http://dx.doi.org/10.1161/01.ATV.0000251500.94478.18] [PMID: 17082491]
[75]
Lyle AN, Deshpande NN, Taniyama Y, et al. Poldip2, a novel regulator of Nox4 and cytoskeletal integrity in vascular smooth muscle cells. Circ Res 2009; 105(3): 249-59.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.193722] [PMID: 19574552]
[76]
Martyn KD, Frederick LM, von Loehneysen K, Dinauer MC, Knaus UG. Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases. Cell Signal 2006; 18(1): 69-82.
[http://dx.doi.org/10.1016/j.cellsig.2005.03.023] [PMID: 15927447]
[77]
Dikalov S, Dikalova A, Bikineyeva A, Schmidt H, Harrison D, Griendling K. Distinct roles of Nox1 and Nox4 in basal and angiotensin II-stimulated superoxide and hydrogen peroxide production. Free Radic Biol Med 2008; 45(9): 1340-51.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.08.013] [PMID: 18760347]
[78]
Mochizuki T, Furuta S, Mitsushita J, et al. Inhibition of NADPH oxidase 4 activates apoptosis via the AKT/apoptosis signal-regulating kinase 1 pathway in pancreatic cancer PANC-1 cells. Oncogene 2006; 25(26): 3699-707.
[http://dx.doi.org/10.1038/sj.onc.1209406] [PMID: 16532036]
[79]
Cucoranu I, Clempus R, Dikalova A, et al. NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circ Res 2005; 97(9): 900-7.
[http://dx.doi.org/10.1161/01.RES.0000187457.24338.3D] [PMID: 16179589]
[80]
Cheng G, Cao Z, Xu X, Meir EGV, Lambeth JD. Homologs of gp91 phox : Cloning and tissue expression of Nox3, Nox4, and Nox5. Gene 2001; 269(1-2): 131-40.
[http://dx.doi.org/10.1016/S0378-1119(01)00449-8] [PMID: 11376945]
[81]
Belaiba R, Djordjevic T, Petry A, et al. NOX5 variants are functionally active in endothelial cells. Free Radic Biol Med 2007; 42(4): 446-59.
[http://dx.doi.org/10.1016/j.freeradbiomed.2006.10.054] [PMID: 17275676]
[82]
Guzik TJ, Chen W, Gongora MC, et al. Calcium-dependent NOX5 nicotinamide adenine dinucleotide phosphate oxidase contributes to vascular oxidative stress in human coronary artery disease. J Am Coll Cardiol 2008; 52(22): 1803-9.
[http://dx.doi.org/10.1016/j.jacc.2008.07.063] [PMID: 19022160]
[83]
Miller FJ Jr, Filali M, Huss GJ, et al. Cytokine activation of nuclear factor kappa B in vascular smooth muscle cells requires signaling endosomes containing Nox1 and ClC-3. Circ Res 2007; 101(7): 663-71.
[http://dx.doi.org/10.1161/CIRCRESAHA.107.151076] [PMID: 17673675]
[84]
Csányi G, Taylor WR, Pagano PJ. NOX and inflammation in the vascular adventitia. Free Radic Biol Med 2009; 47(9): 1254-66.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.07.022] [PMID: 19628034]
[85]
Ushio-Fukai M, Alexander RW, Akers M, et al. Reactive oxygen species mediate the activation of Akt/protein kinase B by angiotensin II in vascular smooth muscle cells. J Biol Chem 1999; 274(32): 22699-704.
[http://dx.doi.org/10.1074/jbc.274.32.22699] [PMID: 10428852]
[86]
Taniyama Y, Ushio-Fukai M, Hitomi H, et al. Role of p38 MAPK and MAPKAPK-2 in angiotensin II-induced Akt activation in vascular smooth muscle cells. Am J Physiol Cell Physiol 2004; 287(2): C494-9.
[http://dx.doi.org/10.1152/ajpcell.00439.2003] [PMID: 15084475]
[87]
Adachi T, Pimentel DR, Heibeck T, et al. S-glutathiolation of Ras mediates redox-sensitive signaling by angiotensin II in vascular smooth muscle cells. J Biol Chem 2004; 279(28): 29857-62.
[http://dx.doi.org/10.1074/jbc.M313320200] [PMID: 15123696]
[88]
Ushio-Fukai M, Griendling KK, Becker PL, Hilenski L, Halleran S, Alexander RW. Epidermal growth factor receptor transactivation by angiotensin II requires reactive oxygen species in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2001; 21(4): 489-95.
[http://dx.doi.org/10.1161/01.ATV.21.4.489] [PMID: 11304462]
[89]
Matsuno K, Yamada H, Iwata K, et al. Nox1 is involved in angiotensin II-mediated hypertension: A study in Nox1-deficient mice. Circulation 2005; 112(17): 2677-85.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.573709] [PMID: 16246966]
[90]
Gavazzi G, Banfi B, Deffert C, et al. Decreased blood pressure in NOX1-deficient mice. FEBS Lett 2006; 580(2): 497-504.
[http://dx.doi.org/10.1016/j.febslet.2005.12.049] [PMID: 16386251]
[91]
Siu KL, Li Q, Zhang Y, et al. NOX isoforms in the development of abdominal aortic aneurysm. Redox Biol 2017; 11: 118-25.
[http://dx.doi.org/10.1016/j.redox.2016.11.002] [PMID: 27912196]
[92]
Youn JY, Gao L, Cai H. The p47phox- and NADPH oxidase organiser 1 (NOXO1)-dependent activation of NADPH oxidase 1 (NOX1) mediates endothelial nitric oxide synthase (eNOS) uncoupling and endothelial dysfunction in a streptozotocin-induced murine model of diabetes. Diabetologia 2012; 55(7): 2069-79.
[http://dx.doi.org/10.1007/s00125-012-2557-6] [PMID: 22549734]
[93]
Kumari K, Vishwakarma VK, Kumar K, et al. Effect of benidipine alone and in combination with bosentan and sildenafil in amelioration of pulmonary arterial hypertension in experimental model in rats. J Cardiovasc Pharmacol 2024; 83(4): 330-9.
[http://dx.doi.org/10.1097/FJC.0000000000001541] [PMID: 38241693]
[94]
Gray SP, Di Marco E, Okabe J, et al. NADPH oxidase 1 plays a key role in diabetes mellitus-accelerated atherosclerosis. Circulation 2013; 127(18): 1888-902.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.132159] [PMID: 23564668]
[95]
Wang HD, Xu S, Johns DG, et al. Role of NADPH oxidase in the vascular hypertrophic and oxidative stress response to angiotensin II in mice. Circ Res 2001; 88(9): 947-53.
[http://dx.doi.org/10.1161/hh0901.089987] [PMID: 11349005]
[96]
Judkins CP, Diep H, Broughton BRS, et al. Direct evidence of a role for Nox2 in superoxide production, reduced nitric oxide bioavailability, and early atherosclerotic plaque formation in ApoE −/− mice. Am J Physiol Heart Circ Physiol 2010; 298(1): H24-32.
[http://dx.doi.org/10.1152/ajpheart.00799.2009] [PMID: 19837950]
[97]
Matsushima S, Kuroda J, Ago T, et al. Broad suppression of NADPH oxidase activity exacerbates ischemia/reperfusion injury through inadvertent downregulation of hypoxia-inducible factor-1α and upregulation of peroxisome proliferator-activated receptor-α. Circ Res 2013; 112(8): 1135-49.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.300171] [PMID: 23476056]
[98]
Byrne JA, Grieve DJ, Bendall JK, et al. Contrasting roles of NADPH oxidase isoforms in pressure-overload versus angiotensin II-induced cardiac hypertrophy. Circ Res 2003; 93(9): 802-5.
[http://dx.doi.org/10.1161/01.RES.0000099504.30207.F5] [PMID: 14551238]
[99]
Parajuli N, Patel VB, Wang W, Basu R, Oudit GY. Loss of NOX2 (gp91 phox ) prevents oxidative stress and progression to advanced heart failure. Clin Sci (Lond) 2014; 127(5): 331-40.
[http://dx.doi.org/10.1042/CS20130787] [PMID: 24624929]
[100]
Murdoch CE, Chaubey S, Zeng L, et al. Endothelial NADPH oxidase-2 promotes interstitial cardiac fibrosis and diastolic dysfunction through proinflammatory effects and endothelial-mesenchymal transition. J Am Coll Cardiol 2014; 63(24): 2734-41.
[http://dx.doi.org/10.1016/j.jacc.2014.02.572] [PMID: 24681145]
[101]
Sirker A, Murdoch CE, Protti A, et al. Cell-specific effects of Nox2 on the acute and chronic response to myocardial infarction. J Mol Cell Cardiol 2016; 98: 11-7.
[http://dx.doi.org/10.1016/j.yjmcc.2016.07.003] [PMID: 27397876]
[102]
Djordjevic T, BelAiba RS, Bonello S, Pfeilschifter J, Hess J, Görlach A. Human urotensin II is a novel activator of NADPH oxidase in human pulmonary artery smooth muscle cells. Arterioscler Thromb Vasc Biol 2005; 25(3): 519-25.
[http://dx.doi.org/10.1161/01.ATV.0000154279.98244.eb] [PMID: 15618545]
[103]
Bouabout G, Ayme-Dietrich E, Jacob H, et al. Nox4 genetic inhibition in experimental hypertension and metabolic syndrome. Arch Cardiovasc Dis 2018; 111(1): 41-52.
[http://dx.doi.org/10.1016/j.acvd.2017.03.011] [PMID: 29113787]
[104]
Cowley AW Jr, Yang C, Zheleznova NN, et al. Evidence of the importance of Nox4 in production of hypertension in dahl salt-sensitive rats. Hypertension 2016; 67(2): 440-50.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.06280] [PMID: 26644237]
[105]
Vishwakarma VK, Shah S, Kaur T, et al. Effect of vinpocetine alone and in combination with enalapril in experimental model of diabetic cardiomyopathy in rats: Possible involvement of PDE-1/TGF-β/ Smad 2/3 signalling pathways. J Pharm Pharmacol 2023; 75(9): 1198-211.
[http://dx.doi.org/10.1093/jpp/rgad043] [PMID: 37229596]
[106]
Gray SP, Di Marco E, Kennedy K, et al. Reactive oxygen species can provide atheroprotection via NOX4-dependent inhibition of inflammation and vascular remodeling. Arterioscler Thromb Vasc Biol 2016; 36(2): 295-307.
[http://dx.doi.org/10.1161/ATVBAHA.115.307012] [PMID: 26715682]
[107]
Matsushima S, Kuroda J, Ago T, et al. Increased oxidative stress in the nucleus caused by Nox4 mediates oxidation of HDAC4 and cardiac hypertrophy. Circ Res 2013; 112(4): 651-63.
[http://dx.doi.org/10.1161/CIRCRESAHA.112.279760] [PMID: 23271793]
[108]
Zhang M, Brewer AC, Schröder K, et al. NADPH oxidase-4 mediates protection against chronic load-induced stress in mouse hearts by enhancing angiogenesis. Proc Natl Acad Sci USA 2010; 107(42): 18121-6.
[http://dx.doi.org/10.1073/pnas.1009700107] [PMID: 20921387]
[109]
Siu KL, Lotz C, Ping P, Cai H. Netrin-1 abrogates ischemia/reperfusion-induced cardiac mitochondrial dysfunction via nitric oxide-dependent attenuation of NOX4 activation and recoupling of NOS. J Mol Cell Cardiol 2015; 78: 174-85.
[http://dx.doi.org/10.1016/j.yjmcc.2014.07.005] [PMID: 25066694]
[110]
Ago T, Kuroda J, Pain J, Fu C, Li H, Sadoshima J. Upregulation of Nox4 by hypertrophic stimuli promotes apoptosis and mitochondrial dysfunction in cardiac myocytes. Circ Res 2010; 106(7): 1253-64.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.213116] [PMID: 20185797]
[111]
Brar SS, Corbin Z, Kennedy TP, et al. NOX5 NAD(P)H oxidase regulates growth and apoptosis in DU 145 prostate cancer cells. Am J Physiol Cell Physiol 2003; 285(2): C353-69.
[http://dx.doi.org/10.1152/ajpcell.00525.2002] [PMID: 12686516]
[112]
Kawahara T, Lambeth JD. Phosphatidylinositol (4,5)-bisphosphate modulates Nox5 localization via an N-terminal polybasic region. Mol Biol Cell 2008; 19(10): 4020-31.
[http://dx.doi.org/10.1091/mbc.e07-12-1223] [PMID: 18614798]
[113]
Touyz RM, Anagnostopoulou A, Rios F, Montezano AC, Camargo LL. NOX5: Molecular biology and pathophysiology. Exp Physiol 2019; 104(5): 605-16.
[http://dx.doi.org/10.1113/EP086204] [PMID: 30801870]
[114]
Casas AI, Kleikers PWM, Geuss E, et al. Calcium-dependent blood-brain barrier breakdown by NOX5 limits postreperfusion benefit in stroke. J Clin Invest 2019; 129(4): 1772-8.
[http://dx.doi.org/10.1172/JCI124283] [PMID: 30882367]
[115]
Jha JC, Banal C, Okabe J, et al. NADPH oxidase Nox5 accelerates renal injury in diabetic nephropathy. Diabetes 2017; 66(10): 2691-703.
[http://dx.doi.org/10.2337/db16-1585] [PMID: 28747378]
[116]
Montezano AC, De Lucca Camargo L, Persson P, et al. NADPH oxidase 5 is a pro-contractile Nox isoform and a point of cross-talk for calcium and redox signaling-implications in vascular function. J Am Heart Assoc 2018; 7(12): e009388.
[http://dx.doi.org/10.1161/JAHA.118.009388] [PMID: 29907654]
[117]
Valavanidis A, Vlachogianni T, Fiotakis K, Loridas S. Pulmonary oxidative stress, inflammation and cancer: Respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. Int J Environ Res Public Health 2013; 10(9): 3886-907.
[http://dx.doi.org/10.3390/ijerph10093886] [PMID: 23985773]
[118]
Chatterjee M, Saluja R, Kanneganti S, Chinta S, Dikshit M. Biochemical and molecular evaluation of neutrophil NOS in spontaneously hypertensive rats. Cell Mol Biol Noisy--Gd Fr 2007; 53(1): 84-93.
[119]
Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev 2007; 87(1): 315-424.
[http://dx.doi.org/10.1152/physrev.00029.2006] [PMID: 17237348]
[120]
Dröge W. Free radicals in the physiological control of cell function. Physiol Rev 2002; 82(1): 47-95.
[http://dx.doi.org/10.1152/physrev.00018.2001] [PMID: 11773609]
[121]
Ceriello A. Possible role of oxidative stress in the pathogenesis of hypertension. Diabetes Care 2008; 31 (Suppl. 2): S181-4.
[http://dx.doi.org/10.2337/dc08-s245] [PMID: 18227482]
[122]
Liu JQ, Zelko IN, Erbynn EM, Sham JSK, Folz RJ. Hypoxic pulmonary hypertension: Role of superoxide and NADPH oxidase (gp91 phox ). Am J Physiol Lung Cell Mol Physiol 2006; 290(1): L2-L10.
[http://dx.doi.org/10.1152/ajplung.00135.2005] [PMID: 16085672]
[123]
Ismail S, Sturrock A, Wu P, et al. NOX4 mediates hypoxia-induced proliferation of human pulmonary artery smooth muscle cells: The role of autocrine production of transforming growth factor-β1 and insulin-like growth factor binding protein-3. Am J Physiol Lung Cell Mol Physiol 2009; 296(3): L489-99.
[http://dx.doi.org/10.1152/ajplung.90488.2008] [PMID: 19036873]
[124]
Fike CD, Slaughter JC, Kaplowitz MR, Zhang Y, Aschner JL. Reactive oxygen species from NADPH oxidase contribute to altered pulmonary vascular responses in piglets with chronic hypoxia-induced pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2008; 295(5): L881-8.
[http://dx.doi.org/10.1152/ajplung.00047.2008] [PMID: 18757525]
[125]
Mittal M, Roth M, König P, et al. Hypoxia-dependent regulation of nonphagocytic NADPH oxidase subunit NOX4 in the pulmonary vasculature. Circ Res 2007; 101(3): 258-67.
[http://dx.doi.org/10.1161/CIRCRESAHA.107.148015] [PMID: 17585072]
[126]
Gupte SA, Wolin MS. Oxidant and redox signaling in vascular oxygen sensing: Implications for systemic and pulmonary hypertension. Antioxid Redox Signal 2008; 10(6): 1137-52.
[http://dx.doi.org/10.1089/ars.2007.1995] [PMID: 18315496]
[127]
Diebold I, Petry A, Hess J, Görlach A. The NADPH oxidase subunit NOX4 is a new target gene of the hypoxia-inducible factor-1. Mol Biol Cell 2010; 21(12): 2087-96.
[http://dx.doi.org/10.1091/mbc.e09-12-1003] [PMID: 20427574]
[128]
Chen F, Haigh S, Barman S, Fulton DJR. From form to function: The role of Nox4 in the cardiovascular system. Front Physiol 2012; 3: 412.
[http://dx.doi.org/10.3389/fphys.2012.00412] [PMID: 23125837]
[129]
Nisbet RE, Bland JM, Kleinhenz DJ, et al. Rosiglitazone attenuates chronic hypoxia-induced pulmonary hypertension in a mouse model. Am J Respir Cell Mol Biol 2010; 42(4): 482-90.
[http://dx.doi.org/10.1165/rcmb.2008-0132OC] [PMID: 19520921]
[130]
Lu X, Murphy TC, Nanes MS, Hart CM. PPARγ regulates hypoxia-induced Nox4 expression in human pulmonary artery smooth muscle cells through NF-κB. Am J Physiol Lung Cell Mol Physiol 2010; 299(4): L559-66.
[http://dx.doi.org/10.1152/ajplung.00090.2010] [PMID: 20622120]
[131]
Rajagopalan S, Kurz S, Münzel T, et al. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest 1996; 97(8): 1916-23.
[http://dx.doi.org/10.1172/JCI118623] [PMID: 8621776]
[132]
Farogh Ahsan , Arshiya Shamim , Upadhyay PK, Srivastav RK, Ahsan F, Shamim A. Cramming the causative mechanism of glycogen synthase kinase-3β mediated by ischemic preconditioning against ovariectomy challenged rat heart. Int J Res Pharmaceut Sci 2021; 12(1): 669-75.
[http://dx.doi.org/10.26452/ijrps.v12i1.4158]
[133]
Nakane H, Miller FJ Jr, Faraci FM, Toyoda K, Heistad DD. Gene transfer of endothelial nitric oxide synthase reduces angiotensin II-induced endothelial dysfunction. Hypertension 2000; 35(2): 595-601.
[http://dx.doi.org/10.1161/01.HYP.35.2.595] [PMID: 10679503]
[134]
Zafari AM, Ushio-Fukai M, Akers M, et al. Role of NADH/NADPH oxidase-derived H2O2 in angiotensin II-induced vascular hypertrophy. Hypertension 1998; 32(3): 488-95.
[http://dx.doi.org/10.1161/01.HYP.32.3.488] [PMID: 9740615]
[135]
Wind S, Beuerlein K, Armitage ME, et al. Oxidative stress and endothelial dysfunction in aortas of aged spontaneously hypertensive rats by NOX1/2 is reversed by NADPH oxidase inhibition. Hypertension 2010; 56(3): 490-7.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.109.149187] [PMID: 20606112]
[136]
Dikalova A, Clempus R, Lassègue B, et al. Nox1 overexpression potentiates angiotensin II-induced hypertension and vascular smooth muscle hypertrophy in transgenic mice. Circulation 2005; 112(17): 2668-76.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.538934] [PMID: 16230485]
[137]
Gavazzi G, Deffert C, Trocme C, Schäppi M, Herrmann FR, Krause KH. NOX1 deficiency protects from aortic dissection in response to angiotensin II. Hypertension 2007; 50(1): 189-96.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.107.089706] [PMID: 17502491]
[138]
Laude K, Cai H, Fink B, et al. Hemodynamic and biochemical adaptations to vascular smooth muscle overexpression of p22phox in mice. Am J Physiol Heart Circ Physiol 2005; 288(1): H7-H12.
[http://dx.doi.org/10.1152/ajpheart.00637.2004] [PMID: 15471976]
[139]
Upadhyay PK, Thakur N, Vishwakarma VK, Chaurasiya HS, Ansari TM. Modulation of angiotensin-II and angiotensin 1-7 levels influences cardiac function in myocardial ischemia-reperfusion injury. Curr Drug Res Rev 2024; 16
[http://dx.doi.org/10.2174/0125899775280160240122065607] [PMID: 38299413]
[140]
Landmesser U, Cai H, Dikalov S, et al. Role of p47(phox) in vascular oxidative stress and hypertension caused by angiotensin II. Hypertension 2002; 40(4): 511-5.
[http://dx.doi.org/10.1161/01.HYP.0000032100.23772.98] [PMID: 12364355]
[141]
Landmesser U, Dikalov S, Price SR, et al. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest 2003; 111(8): 1201-9.
[http://dx.doi.org/10.1172/JCI200314172] [PMID: 12697739]
[142]
Kamani CH, Allenbach G, Jreige M, et al. Diagnostic performance of 18F-FDG PET/CT in native valve endocarditis: Systematic review and bivariate meta-analysis. Diagnostics (Basel) 2020; 10(10): 754.
[http://dx.doi.org/10.3390/diagnostics10100754] [PMID: 32993032]
[143]
Dikalova AE, Góngora MC, Harrison DG, Lambeth JD, Dikalov S, Griendling KK. Upregulation of Nox1 in vascular smooth muscle leads to impaired endothelium-dependent relaxation via eNOS uncoupling. Am J Physiol Heart Circ Physiol 2010; 299(3): H673-9.
[http://dx.doi.org/10.1152/ajpheart.00242.2010] [PMID: 20639222]
[144]
Touyz RM, Mercure C, He Y, et al. Angiotensin II-dependent chronic hypertension and cardiac hypertrophy are unaffected by gp91phox-containing NADPH oxidase. Hypertension 2005; 45(4): 530-7.
[http://dx.doi.org/10.1161/01.HYP.0000158845.49943.5e] [PMID: 15753233]
[145]
Jung O, Schreiber JG, Geiger H, Pedrazzini T, Busse R, Brandes RP. gp91phox-containing NADPH oxidase mediates endothelial dysfunction in renovascular hypertension. Circulation 2004; 109(14): 1795-801.
[http://dx.doi.org/10.1161/01.CIR.0000124223.00113.A4] [PMID: 15037533]
[146]
Ray R, Murdoch CE, Wang M, et al. Endothelial Nox4 NADPH oxidase enhances vasodilatation and reduces blood pressure in vivo. Arterioscler Thromb Vasc Biol 2011; 31(6): 1368-76.
[http://dx.doi.org/10.1161/ATVBAHA.110.219238] [PMID: 21415386]
[147]
Takac I, Schröder K, Brandes RP. The Nox family of NADPH oxidases: Friend or foe of the vascular system? Curr Hypertens Rep 2012; 14(1): 70-8.
[http://dx.doi.org/10.1007/s11906-011-0238-3] [PMID: 22071588]
[148]
Rajendran P, Rengarajan T, Thangavel J, et al. The vascular endothelium and human diseases. Int J Biol Sci 2013; 9(10): 1057-69.
[http://dx.doi.org/10.7150/ijbs.7502] [PMID: 24250251]
[149]
Kleinschnitz C, Grund H, Wingler K, et al. Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration. PLoS Biol 2010; 8(9): e1000479.
[http://dx.doi.org/10.1371/journal.pbio.1000479] [PMID: 20877715]
[150]
Yogi A, Mercure C, Touyz J, et al. Renal redox-sensitive signaling, but not blood pressure, is attenuated by Nox1 knockout in angiotensin II-dependent chronic hypertension. Hypertension 2008; 51(2): 500-6.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.107.103192] [PMID: 18195161]
[151]
Sirker A, Zhang M, Shah AM. NADPH oxidases in cardiovascular disease: Insights from in vivo models and clinical studies. Basic Res Cardiol 2011; 106(5): 735-47.
[http://dx.doi.org/10.1007/s00395-011-0190-z] [PMID: 21598086]
[152]
Lassègue B, San Martín A, Griendling KK. Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ Res 2012; 110(10): 1364-90.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.243972] [PMID: 22581922]
[153]
Perrotta I, Aquila S. The role of oxidative stress and autophagy in atherosclerosis. Oxid Med Cell Longev 2015; 2015: 1-10.
[http://dx.doi.org/10.1155/2015/130315] [PMID: 25866599]
[154]
Frey RS, Ushio-Fukai M, Malik AB. NADPH oxidase-dependent signaling in endothelial cells: Role in physiology and pathophysiology. Antioxid Redox Signal 2009; 11(4): 791-810.
[http://dx.doi.org/10.1089/ars.2008.2220] [PMID: 18783313]
[155]
Prieto-Bermejo R, Hernández-Hernández A. The importance of NADPH oxidases and redox signaling in angiogenesis. Antioxidants 2017; 6(2): 32.
[http://dx.doi.org/10.3390/antiox6020032] [PMID: 28505091]
[156]
Lee MY, Martin AS, Mehta PK, et al. Mechanisms of vascular smooth muscle NADPH oxidase 1 (Nox1) contribution to injury-induced neointimal formation. Arterioscler Thromb Vasc Biol 2009; 29(4): 480-7.
[http://dx.doi.org/10.1161/ATVBAHA.108.181925] [PMID: 19150879]
[157]
Vendrov AE, Hakim ZS, Madamanchi NR, Rojas M, Madamanchi C, Runge MS. Atherosclerosis is attenuated by limiting superoxide generation in both macrophages and vessel wall cells. Arterioscler Thromb Vasc Biol 2007; 27(12): 2714-21.
[http://dx.doi.org/10.1161/ATVBAHA.107.152629] [PMID: 17823367]
[158]
Förstermann U, Xia N, Li H. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ Res 2017; 120(4): 713-35.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.309326] [PMID: 28209797]
[159]
Yang S, Chen H, Su W, et al. Protective effects of Salvianic acid A against multiple-organ ischemia-reperfusion injury: A review. Front Pharmacol 2023; 14: 1297124.
[http://dx.doi.org/10.3389/fphar.2023.1297124] [PMID: 38089048]
[160]
Takac I, Schröder K, Zhang L, et al. The E-loop is involved in hydrogen peroxide formation by the NADPH oxidase Nox4. J Biol Chem 2011; 286(15): 13304-13.
[http://dx.doi.org/10.1074/jbc.M110.192138] [PMID: 21343298]
[161]
Fulton DJR, Barman SA. Clarity on the isoform-specific roles of NADPH oxidases and NADPH oxidase-4 in atherosclerosis. Arterioscler Thromb Vasc Biol 2016; 36(4): 579-81.
[http://dx.doi.org/10.1161/ATVBAHA.116.307096] [PMID: 27010024]
[162]
Di Marco E, Gray SP, Kennedy K, et al. NOX4-derived reactive oxygen species limit fibrosis and inhibit proliferation of vascular smooth muscle cells in diabetic atherosclerosis. Free Radic Biol Med 2016; 97: 556-67.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.07.013] [PMID: 27445103]
[163]
Nishimura A, Ago T, Kuroda J, et al. Detrimental role of pericyte Nox4 in the acute phase of brain ischemia. J Cereb Blood Flow Metab 2016; 36(6): 1143-54.
[http://dx.doi.org/10.1177/0271678X15606456] [PMID: 26661159]
[164]
Poznyak AV, Grechko AV, Orekhova VA, Khotina V, Ivanova EA, Orekhov AN. NADPH oxidases and their role in atherosclerosis. Biomedicines 2020; 8(7): 206.
[http://dx.doi.org/10.3390/biomedicines8070206] [PMID: 32664404]
[165]
Burtenshaw D, Hakimjavadi R, Redmond E, Cahill P. Nox, reactive oxygen species and regulation of vascular cell fate. Antioxidants 2017; 6(4): 90.
[http://dx.doi.org/10.3390/antiox6040090] [PMID: 29135921]
[166]
Aguado A, Fischer T, Rodríguez C, et al. Hu antigen R is required for NOX-1 but not NOX-4 regulation by inflammatory stimuli in vascular smooth muscle cells. J Hypertens 2016; 34(2): 253-65.
[http://dx.doi.org/10.1097/HJH.0000000000000801] [PMID: 26682942]
[167]
Valente AJ, Yoshida T, Murthy SN, et al. Angiotensin II enhances AT 1 -Nox1 binding and stimulates arterial smooth muscle cell migration and proliferation through AT 1, Nox1, and interleukin-18. Am J Physiol Heart Circ Physiol 2012; 303(3): H282-96.
[http://dx.doi.org/10.1152/ajpheart.00231.2012] [PMID: 22636674]
[168]
García-Redondo AB, Aguado A, Briones AM, Salaices M. NADPH oxidases and vascular remodeling in cardiovascular diseases. Pharmacol Res 2016; 114: 110-20.
[http://dx.doi.org/10.1016/j.phrs.2016.10.015] [PMID: 27773825]
[169]
Vendrov AE, Sumida A, Canugovi C, et al. NOXA1-dependent NADPH oxidase regulates redox signaling and phenotype of vascular smooth muscle cell during atherogenesis. Redox Biol 2019; 21: 101063.
[http://dx.doi.org/10.1016/j.redox.2018.11.021] [PMID: 30576919]
[170]
Maxwell SRJ, Lip GYH. Reperfusion injury: A review of the pathophysiology, clinical manifestations and therapeutic options. Int J Cardiol 1997; 58(2): 95-117.
[http://dx.doi.org/10.1016/S0167-5273(96)02854-9] [PMID: 9049675]
[171]
Eltzschig HK, Collard CD. Vascular ischaemia and reperfusion injury. Br Med Bull 2004; 70(1): 71-86.
[http://dx.doi.org/10.1093/bmb/ldh025] [PMID: 15494470]
[172]
Krijnen P A J, Meischl C, Hack CE, et al. Increased Nox2 expression in human cardiomyocytes after acute myocardial infarction. J Clin Pathol 2003; 56(3): 194-9.
[http://dx.doi.org/10.1136/jcp.56.3.194] [PMID: 12610097]
[173]
Li Z, Zhang X, Liu S, et al. BRG1 regulates NOX gene transcription in endothelial cells and contributes to cardiac ischemia-reperfusion injury. Biochim Biophys Acta Mol Basis Dis 2018; 1864(10): 3477-86.
[http://dx.doi.org/10.1016/j.bbadis.2018.08.002] [PMID: 30293567]
[174]
Yu Q, Lee CF, Wang W, et al. Elimination of NADPH oxidase activity promotes reductive stress and sensitizes the heart to ischemic injury. J Am Heart Assoc 2014; 3(1): e000555.
[http://dx.doi.org/10.1161/JAHA.113.000555] [PMID: 24470522]
[175]
Narravula S, Colgan SP. Hypoxia-inducible factor 1-mediated inhibition of peroxisome proliferator-activated receptor alpha expression during hypoxia. J Immunol Baltim Md 1950 2001; 1666(12): 7543-8.
[176]
Braunersreuther V, Jaquet V. Reactive oxygen species in myocardial reperfusion injury: From physiopathology to therapeutic approaches. Curr Pharm Biotechnol 2012; 13(1): 97-114.
[http://dx.doi.org/10.2174/138920112798868782] [PMID: 21470157]
[177]
Moens AL, Champion HC, Claeys MJ, et al. High-dose folic acid pretreatment blunts cardiac dysfunction during ischemia coupled to maintenance of high-energy phosphates and reduces postreperfusion injury. Circulation 2008; 117(14): 1810-9.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.725481] [PMID: 18362233]
[178]
Barry-Lane PA, Patterson C, van der Merwe M, et al. p47phox is required for atherosclerotic lesion progression in ApoE–/– mice. J Clin Invest 2001; 108(10): 1513-22.
[http://dx.doi.org/10.1172/JCI200111927] [PMID: 11714743]
[179]
Wingler K, Wünsch S, Kreutz R, Rothermund L, Paul M, Schmidt HHHW. Upregulation of the vascular NAD(P)H-oxidase isoforms Nox1 and Nox4 by the renin-angiotensin system in vitro and in vivo. Free Radic Biol Med 2001; 31(11): 1456-64.
[http://dx.doi.org/10.1016/S0891-5849(01)00727-4] [PMID: 11728818]
[180]
Bendall JK, Rinze R, Adlam D, et al. Endothelial Nox2 overexpression potentiates vascular oxidative stress and hemodynamic response to angiotensin II: Studies in endothelial-targeted Nox2 transgenic mice. Circ Res 2007; 100(7): 1016-25.
[http://dx.doi.org/10.1161/01.RES.0000263381.83835.7b] [PMID: 17363703]
[181]
Douglas G, Bendall JK, Crabtree MJ, et al. Endothelial-specific Nox2 overexpression increases vascular superoxide and macrophage recruitment in ApoE−/− mice. Cardiovasc Res 2012; 94(1): 20-9.
[http://dx.doi.org/10.1093/cvr/cvs026] [PMID: 22287576]
[182]
Kuroda J, Ago T, Matsushima S, Zhai P, Schneider MD, Sadoshima J. NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart. Proc Natl Acad Sci USA 2010; 107(35): 15565-70.
[http://dx.doi.org/10.1073/pnas.1002178107] [PMID: 20713697]
[183]
Zhang Y, Shimizu H, Siu KL, Mahajan A, Chen JN, Cai H. NADPH oxidase 4 induces cardiac arrhythmic phenotype in zebrafish. J Biol Chem 2014; 289(33): 23200-8.
[http://dx.doi.org/10.1074/jbc.M114.587196] [PMID: 24962575]
[184]
Schürmann C, Rezende F, Kruse C, et al. The NADPH oxidase Nox4 has anti-atherosclerotic functions. Eur Heart J 2015; 36(48): 3447-56.
[http://dx.doi.org/10.1093/eurheartj/ehv460] [PMID: 26385958]
[185]
Craige SM, Kant S, Reif M, et al. Endothelial NADPH oxidase 4 protects ApoE-/- mice from atherosclerotic lesions. Free Radic Biol Med 2015; 89: 1-7.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.07.004] [PMID: 26169727]
[186]
Cooper JM, Petty RKH, Hayes DJ, Morgan-Hughest JA, Clark JB. Chronic administration of the oral hypoglycaemic agent diphenyleneiodonium to rats. Biochem Pharmacol 1988; 37(4): 687-94.
[http://dx.doi.org/10.1016/0006-2952(88)90143-8] [PMID: 3342100]
[187]
Qin S, Schulte BA, Wang GY. Role of senescence induction in cancer treatment. World J Clin Oncol 2018; 9(8): 180-7.
[http://dx.doi.org/10.5306/wjco.v9.i8.180] [PMID: 30622926]
[188]
Jeena MT, Kim S, Jin S, Ryu JH. Recent progress in mitochondria-targeted drug and drug-free agents for cancer therapy. Cancers (Basel) 2019; 12(1): 4.
[http://dx.doi.org/10.3390/cancers12010004] [PMID: 31861339]
[189]
’t Hart BA, Copray S, Philippens I. Apocynin, a low molecular oral treatment for neurodegenerative disease. BioMed Res Int 2014; 2014: 298020.
[PMID: 25140304]
[190]
Yang T, Zang DW, Shan W, et al. Synthesis and evaluations of novel apocynin derivatives as anti-glioma agents. Front Pharmacol 2019; 10: 951.
[http://dx.doi.org/10.3389/fphar.2019.00951] [PMID: 31551769]
[191]
Heumüller S, Wind S, Barbosa-Sicard E, et al. Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant. Hypertension 2008; 51(2): 211-7.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.107.100214] [PMID: 18086956]
[192]
Kim BY, Park HR, Shin JH, et al. The serine protease inhibitor, 4-(2-aminoethyl) benzene sulfonyl fluoride hydrochloride, reduces allergic inflammation in a house dust mite allergic rhinitis mouse model. Allergy Asthma Immunol Res 2014; 6(6): 558-66.
[http://dx.doi.org/10.4168/aair.2014.6.6.558] [PMID: 25374756]
[193]
Qin F, Siwik DA, Luptak I, Hou X, Wang L, Higuchi A. The polyphenols resveratrol and S17834 prevent the structural and functional sequelae of diet-induced metabolic heart disease in mice. Circulation 2012; 125(14): 1757-64.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.067801]
[194]
Li Y, Xu S, Mihaylova MM, et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab 2011; 13(4): 376-88.
[http://dx.doi.org/10.1016/j.cmet.2011.03.009] [PMID: 21459323]
[195]
Willey JZ, Elkind MSV. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors in the treatment of central nervous system diseases. Arch Neurol 2010; 67(9): 1062-7.
[http://dx.doi.org/10.1001/archneurol.2010.199] [PMID: 20837848]
[196]
Kotyla P. The role of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) in modern rheumatology. Ther Adv Musculoskelet Dis 2010; 2(5): 257-69.
[http://dx.doi.org/10.1177/1759720X10384307] [PMID: 22870452]
[197]
Dierkes R, Warnking K, Liedmann S, Seyer R, Ludwig S, Ehrhardt C. The Rac1 inhibitor NSC23766 exerts anti-influenza virus properties by affecting the viral polymerase complex activity. PLoS One 2014; 9(2): e88520.
[http://dx.doi.org/10.1371/journal.pone.0088520] [PMID: 24523909]
[198]
Veluthakal R, Sidarala V, Kowluru A. NSC23766, a known inhibitor of tiam1-rac1 signaling module, prevents the onset of type 1 diabetes in the NOD mouse model. Cell Physiol Biochem 2016; 39(2): 760-7.
[http://dx.doi.org/10.1159/000445666] [PMID: 27467102]
[199]
Lu WJ, Li JY, Chen RJ, Huang LT, Lee TY, Lin KH. VAS2870 and VAS3947 attenuate platelet activation and thrombus formation via a NOX-independent pathway downstream of PKC. Sci Rep 2019; 9(1): 18852.
[http://dx.doi.org/10.1038/s41598-019-55189-5] [PMID: 31827142]
[200]
Nieswandt B, Pleines I, Bender M. Platelet adhesion and activation mechanisms in arterial thrombosis and ischaemic stroke. J Thromb Haemost 2011; 9 (Suppl. 1): 92-104.
[http://dx.doi.org/10.1111/j.1538-7836.2011.04361.x] [PMID: 21781245]
[201]
May AE, Seizer P, Gawaz M. Platelets: Inflammatory firebugs of vascular walls. Arterioscler Thromb Vasc Biol 2008; 28(3): s5-s10.
[http://dx.doi.org/10.1161/ATVBAHA.107.158915] [PMID: 18174454]
[202]
Stokes KY, Russell JM, Jennings MH, Alexander JS, Granger DN. Platelet-associated NAD(P)H oxidase contributes to the thrombogenic phenotype induced by hypercholesterolemia. Free Radic Biol Med 2007; 43(1): 22-30.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.02.027] [PMID: 17561090]
[203]
Ardila-Leal LD, Poutou-Piñales RA, Pedroza-Rodríguez AM, Quevedo-Hidalgo BE. A brief history of colour, the environmental impact of synthetic dyes and removal by using laccases. Molecules 2021; 26(13): 3813.
[http://dx.doi.org/10.3390/molecules26133813] [PMID: 34206669]
[204]
Dhiman M, Garg NJ. NADPH oxidase inhibition ameliorates Trypanosoma cruzi-induced myocarditis during Chagas disease. J Pathol 2011; 225(4): 583-96.
[http://dx.doi.org/10.1002/path.2975] [PMID: 21952987]
[205]
Altenhöfer S, Radermacher KA, Kleikers PWM, Wingler K, Schmidt HHHW. Evolution of NADPH oxidase inhibitors: Selectivity and mechanisms for target engagement. Antioxid Redox Signal 2015; 23(5): 406-27.
[http://dx.doi.org/10.1089/ars.2013.5814] [PMID: 24383718]
[206]
Huang X, Xiaokaiti Y, Yang J, et al. Inhibition of phosphodiesterase 2 reverses gp91phox oxidase-mediated depression- and anxiety-like behavior. Neuropharmacology 2018; 143: 176-85.
[http://dx.doi.org/10.1016/j.neuropharm.2018.09.039] [PMID: 30268520]
[207]
Kim JA, Neupane GP, Lee ES, Jeong BS, Park BC, Thapa P. NADPH oxidase inhibitors: A patent review. Expert Opin Ther Pat 2011; 21(8): 1147-58.
[http://dx.doi.org/10.1517/13543776.2011.584870] [PMID: 21554154]
[208]
Diebold BA, Smith SME, Li Y, Lambeth JD. NOX2 as a target for drug development: Indications, possible complications, and progress. Antioxid Redox Signal 2015; 23(5): 375-405.
[http://dx.doi.org/10.1089/ars.2014.5862] [PMID: 24512192]
[209]
Chen Q, Devine I, Walker S, et al. Nox2ds-tat, a peptide inhibitor of NADPH oxidase, exerts cardioprotective effects by attenuating reactive oxygen species during ischemia/reperfusion injury. Am J Biomed Sci 2016; 8(3): 208-27.
[http://dx.doi.org/10.5099/aj160300208]
[210]
Ranayhossaini DJ, Rodriguez AI, Sahoo S, et al. Selective recapitulation of conserved and nonconserved regions of putative NOXA1 protein activation domain confers isoform-specific inhibition of Nox1 oxidase and attenuation of endothelial cell migration. J Biol Chem 2013; 288(51): 36437-50.
[http://dx.doi.org/10.1074/jbc.M113.521344] [PMID: 24187133]
[211]
Gray SP, Jha JC, Kennedy K, et al. Combined NOX1/4 inhibition with GKT137831 in mice provides dose-dependent reno- and atheroprotection even in established micro- and macrovascular disease. Diabetologia 2017; 60(5): 927-37.
[http://dx.doi.org/10.1007/s00125-017-4215-5] [PMID: 28160092]
[212]
Urner S, Ho F, Jha JC, Ziegler D, Jandeleit-Dahm K. NADPH oxidase inhibition: Preclinical and clinical studies in diabetic complications. Antioxid Redox Signal 2020; 33(6): 415-34.
[http://dx.doi.org/10.1089/ars.2020.8047] [PMID: 32008354]
[213]
Babior BM. NADPH oxidase. Curr Opin Immunol 2004; 16(1): 42-7.
[http://dx.doi.org/10.1016/j.coi.2003.12.001] [PMID: 14734109]
[214]
Schildknecht S, Weber A, Gerding H, et al. The NOX1/4 inhibitor GKT136901 as selective and direct scavenger of peroxynitrite. Curr Med Chem 2013; 21(3): 365-76.
[http://dx.doi.org/10.2174/09298673113209990179] [PMID: 23848532]
[215]
Jha JC, Banal C, Chow BSM, Cooper ME, Jandeleit-Dahm K. Diabetes and kidney disease: Role of oxidative stress. Antioxid Redox Signal 2016; 25(12): 657-84.
[http://dx.doi.org/10.1089/ars.2016.6664] [PMID: 26906673]
[216]
Liao J, Peng B, Huang G, et al. Inhibition of NOX4 with GLX351322 alleviates acute ocular hypertension-induced retinal inflammation and injury by suppressing ROS mediated redox-sensitive factors activation. Biomed Pharmacother 2023; 165: 115052.
[http://dx.doi.org/10.1016/j.biopha.2023.115052] [PMID: 37399715]
[217]
Zhang Y, Murugesan P, Huang K, Cai H. NADPH oxidases and oxidase crosstalk in cardiovascular diseases: Novel therapeutic targets. Nat Rev Cardiol 2020; 17(3): 170-94.
[http://dx.doi.org/10.1038/s41569-019-0260-8] [PMID: 31591535]
[218]
Wang X, Elksnis A, Wikström P, Walum E, Welsh N, Carlsson PO. The novel NADPH oxidase 4 selective inhibitor GLX7013114 counteracts human islet cell death in vitro. PLoS One 2018; 13(9): e0204271.
[http://dx.doi.org/10.1371/journal.pone.0204271] [PMID: 30265686]
[219]
Dionysopoulou S, Wikström P, Bucolo C, et al. Topically administered NOX4 inhibitor, GLX7013114, is efficacious in treating the early pathological events of diabetic retinopathy. Diabetes 2023; 72(5): 638-52.
[http://dx.doi.org/10.2337/db22-0515] [PMID: 36821829]
[220]
Kuhns DB, Alvord WG, Heller T, et al. Residual NADPH oxidase and survival in chronic granulomatous disease. N Engl J Med 2010; 363(27): 2600-10.
[http://dx.doi.org/10.1056/NEJMoa1007097] [PMID: 21190454]
[221]
de Oliveira MG, Monica FZ, Passos GR, et al. Selective pharmacological inhibition of NOX2 by GSK2795039 improves bladder dysfunction in cyclophosphamide-induced cystitis in mice. Antioxidants 2022; 12(1): 92.
[http://dx.doi.org/10.3390/antiox12010092] [PMID: 36670953]
[222]
Zielonka J, Zielonka M, VerPlank L, et al. Mitigation of NADPH oxidase 2 activity as a strategy to inhibit peroxynitrite formation. J Biol Chem 2016; 291(13): 7029-44.
[http://dx.doi.org/10.1074/jbc.M115.702787] [PMID: 26839313]
[223]
Padilha EC, Shah P, Rai G, Xu X. NOX2 inhibitor GSK2795039 metabolite identification towards drug optimization. J Pharm Biomed Anal 2021; 201: 114102.
[http://dx.doi.org/10.1016/j.jpba.2021.114102] [PMID: 33992989]
[224]
Noh MH, Lee DK, Kim YS, et al. APX-115A, a pan-NADPH oxidase inhibitor, reduces the degree and incidence rate of dry eye in the STZ-induced diabetic rat model. Exp Ther Med 2023; 25(5): 194.
[http://dx.doi.org/10.3892/etm.2023.11893] [PMID: 37090081]
[225]
Kwon G, Uddin MJ, Lee G, et al. A novel pan-Nox inhibitor, APX-115, protects kidney injury in streptozotocin-induced diabetic mice: Possible role of peroxisomal and mitochondrial biogenesis. Oncotarget 2017; 8(43): 74217-32.
[http://dx.doi.org/10.18632/oncotarget.18540] [PMID: 29088780]
[226]
Lee HE, Shim S, Choi Y, Bae YS. NADPH oxidase inhibitor development for diabetic nephropathy through water tank model. Kidney Res Clin Pract 2022; 41 (Suppl. 2): S89-98.
[http://dx.doi.org/10.23876/j.krcp.21.269] [PMID: 35977907]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy