Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Immune-mediated Bowel Disease: Role of Intestinal Parasites and Gut Microbiome

Author(s): Sejuti Ray Chowdhury, Arup Dey, Manish Kumar Gautam*, Sandip Mondal, Sharad D. Pawar, Anagha Ranade, Manajit Bora, Mayank Gangwar, Aniya Teli and Nur Shaid Mondal

Volume 30, Issue 40, 2024

Published on: 04 September, 2024

Page: [3164 - 3174] Pages: 11

DOI: 10.2174/0113816128326270240816075025

Price: $65

Abstract

Immune-mediated bowel diseases (IMBD), notably ulcerative colitis and Crohn's disease, impose a substantial global health burden due to their intricate etiology and escalating prevalence. The nexus between intestinal parasites and the gut microbiome in IMBD is a dynamic and complex field of study. Several studies have evidenced the capacity of intestinal parasites to modulate the gut microbiome, inducing alterations in microbial diversity, abundance, and metabolic activity. These changes are crucial in influencing the immune response and contributing to the development of IMBDs. Simultaneously, the gut microbiome functions as a linchpin in sustaining intestinal homeostasis and immune regulation. Dysbiosis, marked by shifts in gut microbial composition, is intricately linked to IMBD pathogenesis. Imbalances in the gut microbiota contribute to hallmark features of IMBDs, such as heightened gut permeability, chronic inflammation, and aberrant immune responses. The bidirectional interaction between intestinal parasites and the gut microbiome adds a layer of complexity to understanding IMBDs. Specific parasites, including hookworms and Necator americanus, exhibit immune downregulation and potential therapeutic applications in celiac disease. Conversely, infections with Strongyloides stercoralis and Blastocystis mirror IBD symptoms, underscoring the intricate relationship between parasites and disease pathogenesis. Further investigation is imperative to comprehensively unravel the mechanisms linking intestinal parasites and the gut microbiome in IMBD. This understanding holds the potential to pave the way for targeted therapeutic strategies aiming to restore gut microbiota homeostasis and alleviate the debilitating symptoms of these conditions. Harnessing the intricate interplay among parasites, the gut microbiome, and the host immune system may unveil novel approaches for managing and treating IMBDs.

Keywords: Immune-mediated bowel diseases, intestinal parasites, microbiome, homeostasis, targeted therapeutic strategies, Crohn's disease.

[1]
Rogler G, Singh A, Kavanaugh A, Rubin DT. Extraintestinal manifestations of inflammatory bowel disease: Current concepts, treatment, and implications for disease management. Gastroenterology 2021; 161(4): 1118-32.
[http://dx.doi.org/10.1053/j.gastro.2021.07.042] [PMID: 34358489]
[2]
Seyedian SS, Nokhostin F, Malamir MD. A review of the diagnosis, prevention, and treatment methods of inflammatory bowel disease. J Med Life 2019; 12(2): 113-22.
[PMID: 31406511]
[3]
de Silva NR, Brooker S, Hotez PJ, Montresor A, Engels D, Savioli L. Soil-transmitted helminth infections: Updating the global picture. Trends Parasitol 2003; 19(12): 547-51.
[http://dx.doi.org/10.1016/j.pt.2003.10.002] [PMID: 14642761]
[4]
Hotez PJ, Bethony J, Bottazzi ME, Brooker S, Diemert D, Loukas A. New technologies for the control of human hookworm infection. Trends Parasitol 2006; 22(7): 327-31.
[http://dx.doi.org/10.1016/j.pt.2006.05.004] [PMID: 16709466]
[5]
Dave M, Purohit T, Razonable R, Loftus EV Jr. Opportunistic infections due to inflammatory bowel disease therapy. Inflamm Bowel Dis 2014; 20(1): 196-212.
[http://dx.doi.org/10.1097/MIB.0b013e3182a827d2] [PMID: 24051931]
[6]
Ruyssers NE, De Winter BY, De Man JG, et al. Therapeutic potential of helminth soluble proteins in TNBS-induced colitis in mice. Inflamm Bowel Dis 2009; 15(4): 491-500.
[http://dx.doi.org/10.1002/ibd.20787] [PMID: 19023900]
[7]
Elliott DE, Li J, Blum A, et al. Exposure to schistosome eggs protects mice from TNBS-induced colitis. Am J Physiol Gastrointest Liver Physiol 2003; 284(3): G385-91.
[http://dx.doi.org/10.1152/ajpgi.00049.2002] [PMID: 12431903]
[8]
Elliott DE, Weinstock JV. Helminth-host immunological interactions: Prevention and control of immune-mediated diseases. Ann N Y Acad Sci 2012; 1247(1): 83-96.
[http://dx.doi.org/10.1111/j.1749-6632.2011.06292.x] [PMID: 22239614]
[9]
Riffkin M, Seow HF, Jackson D, Brown L, Wood P. Defence against the immune barrage: Helminth survival strategies. Immunol Cell Biol 1996; 74(6): 564-74.
[http://dx.doi.org/10.1038/icb.1996.90] [PMID: 8989595]
[10]
Maizels RM, Bundy DAP, Selkirk ME, Smith DF, Anderson RM. Immunological modulation and evasion by helminth parasites in human populations. Nature 1993; 365(6449): 797-805.
[http://dx.doi.org/10.1038/365797a0] [PMID: 8413664]
[11]
Raddatz D, Bockemühl M, Ramadori G. Quantitative measurement of cytokine mRNA in inflammatory bowel disease: Relation to clinical and endoscopic activity and outcome. Eur J Gastroenterol Hepatol 2005; 17(5): 547-57.
[http://dx.doi.org/10.1097/00042737-200505000-00012] [PMID: 15827446]
[12]
Targan SR, Murphy LK. Clarifying the causes of Crohn’s. Nat Med 1995; 1(12): 1241-3.
[PMID: 7489397]
[13]
Zeitz M. Pathogenesis of inflammatory bowel disease. Digestion 1997; 58(1): 59-61.
[http://dx.doi.org/10.1159/000201529] [PMID: 9225095]
[14]
Hanauer SB, Feagan BG, Lichtenstein GR, et al. Maintenance infliximab for Crohn’s disease: The ACCENT I randomised trial. Lancet 2002; 359(9317): 1541-9.
[http://dx.doi.org/10.1016/S0140-6736(02)08512-4] [PMID: 12047962]
[15]
Sands BE, Anderson FH, Bernstein CN, et al. Infliximab maintenance therapy for fistulizing Crohn’s disease. N Engl J Med 2004; 350(9): 876-85.
[http://dx.doi.org/10.1056/NEJMoa030815] [PMID: 14985485]
[16]
Ince MN, Elliott DE, Setiawan T, et al. Role of T cell TGF-beta signaling in intestinal cytokine responses and helminthic immune modulation. Eur J Immunol 2009; 39(7): 1870-8.
[PMID: 19544487]
[17]
Schnoeller C, Rausch S, Pillai S, et al. A helminth immunomodulator reduces allergic and inflammatory responses by induction of IL-10-producing macrophages. J Immunol 2008; 180(6): 4265-72.
[PMID: 18322239]
[18]
Cekin AH, Cekin Y, Adakan Y, Tasdemir E, Koclar FG, Yolcular BO. Blastocystosis in patients with gastrointestinal symptoms: A case–control study. BMC Gastroenterol 2012; 12(1): 122.
[http://dx.doi.org/10.1186/1471-230X-12-122] [PMID: 22963003]
[19]
Satoskar AR, Bozza M, Rodriguez Sosa M, Lin G, David JR. Migration-inhibitory factor gene-deficient mice are susceptible to Cutaneous Leishmania major infection. Infect Immun 2001; 69(2): 906-11.
[PMID: 11159984]
[20]
Terrazas CA, Juarez I, Terrazas LI, Saavedra R, Calleja EA, Rodriguez-Sosa M. Toxoplasma gondii: Impaired maturation and pro-inflammatory response of dendritic cells in MIF-deficient mice favors susceptibility to infection. Exp Parasitol 2010; 126(3): 348-58.
[http://dx.doi.org/10.1016/j.exppara.2010.03.009] [PMID: 20331989]
[21]
Cavalcanti MG, Mesquita JS, Madi K, et al. MIF participates in Toxoplasma gondii-induced pathology following oral infection. PLoS One 2011; 6(9): e25259.
[http://dx.doi.org/10.1371/journal.pone.0025259] [PMID: 21977228]
[22]
Moreels TG, Pelckmans PA. Gastrointestinal parasites. Inflamm Bowel Dis 2005; 11(2): 178-84.
[http://dx.doi.org/10.1097/00054725-200502000-00012] [PMID: 15677912]
[23]
Elliott DE, Summers RW, Weinstock JV. Helminths as governors of immune-mediated inflammation. Int J Parasitol 2007; 37(5): 457-64.
[http://dx.doi.org/10.1016/j.ijpara.2006.12.009] [PMID: 17313951]
[24]
Brunet LR, Dunne DW, Pearce EJ. Cytokine interaction and immune responses during Schistosoma mansoni infection. Parasitol Today 1998; 14(10): 422-7.
[http://dx.doi.org/10.1016/S0169-4758(98)01317-9] [PMID: 17040834]
[25]
Motomura Y, Wang H, Deng Y, El-Sharkawy RT, Verdu EF, Khan WI. Helminth antigen-based strategy to ameliorate inflammation in an experimental model of colitis. Clin Exp Immunol 2008; 155(1): 88-95.
[http://dx.doi.org/10.1111/j.1365-2249.2008.03805.x] [PMID: 19016806]
[26]
Summers RW, Elliott DE, Qadir K, Urban JF Jr, Thompson R, Weinstock JV. Trichuris suis seems to be safe and possibly effective in the treatment of inflammatory bowel disease. Am J Gastroenterol 2003; 98(9): 2034-41.
[http://dx.doi.org/10.1111/j.1572-0241.2003.07660.x] [PMID: 14499784]
[27]
Dogruman-Al F, Simsek Z, Boorom K, et al. Comparison of methods for detection of Blastocystis infection in routinely submitted stool samples, and also in IBS/IBD patients in Ankara, Turkey. PLoS One 2010; 5(11): e15484.
[http://dx.doi.org/10.1371/journal.pone.0015484] [PMID: 21124983]
[28]
Stark D, van Hal S, Marriott D, Ellis J, Harkness J. Irritable bowel syndrome: A review on the role of intestinal protozoa and the importance of their detection and diagnosis. Int J Parasitol 2007; 37(1): 11-20.
[PMID: 17070814]
[29]
Spiller R, Garsed K. Postinfectious irritable bowel syndrome. Gastroenterology 2009; 136(6): 1979-88.
[PMID: 19457422]
[30]
Morgan DR, Benshoff M, Cáceres M, et al. Irritable bowel syndrome and gastrointestinal parasite infection in a developing nation environment. Gastroenterol Res Pract 2012; 2012: 1-6.
[http://dx.doi.org/10.1155/2012/343812] [PMID: 22474433]
[31]
Dizdar V, Spiller R, Singh G, et al. Relative importance of abnormalities of CCK and 5-HT (serotonin) in Giardia-induced post-infectious irritable bowel syndrome and functional dyspepsia. Aliment Pharmacol Ther 2010; 31(8): 883-91.
[http://dx.doi.org/10.1111/j.1365-2036.2010.04251.x] [PMID: 20132151]
[32]
Borody T, Warren E, Wettstein A, et al. Eradication of Dientamoeba fragilis can resolve IBS-like symptoms. J Gastroenterol Hepatol 2002; 17: A103.
[33]
Yakoob J, Jafri W, Beg MA, et al. Blastocystis hominis and Dientamoeba fragilis in patients fulfilling irritable bowel syndrome criteria. Parasitol Res 2010; 107(3): 679-84.
[http://dx.doi.org/10.1007/s00436-010-1918-7] [PMID: 20532564]
[34]
Jimenez-Gonzalez DE, Martinez-Flores WA, Reyes-Gordillo J, et al. Blastocystis infection is associated with irritable bowel syndrome in a Mexican patient population. Parasitol Res 2012; 110(3): 1269-75.
[http://dx.doi.org/10.1007/s00436-011-2626-7] [PMID: 21870243]
[35]
Engsbro AL, Stensvold CR, Nielsen HV, Bytzer P. Treatment of Dientamoeba fragilis in patients with irritable bowel syndrome. Am J Trop Med Hyg 2012; 87(6): 1046-52.
[PMID: 23091195]
[36]
Chai JY, Han ET, Shin EH, et al. High prevalence of Haplorchis taichui, Phaneropsolus molenkampi, and other helminth infections among people in Khammouane province, Lao PDR. Korean J Parasitol 2009; 47(3): 243-7.
[PMID: 19724697]
[37]
Kumchoo K, Wongsawad C, Chai JY, Vanittanakom P, Rojanapaibul A. High prevalence of Haplorchis taichui metacercariae in cyprinoid fish from Chiang Mai province, Thailand. Southeast Asian J Trop Med Public Health 2005; 36(2): 451-5.
[PMID: 15916054]
[38]
Watthanakulpanich D, Waikagul J, Maipanich W, et al. Haplorchis taichui as a possible etiologic agent of irritable bowel syndrome-like symptoms. Korean J Parasitol 2010; 48(3): 225-9.
[http://dx.doi.org/10.3347/kjp.2010.48.3.225] [PMID: 20877501]
[39]
Soyturk M, Akpinar H, Gurler O, et al. Irritable bowel syndrome in persons who acquired trichinellosis. Am J Gastroenterol 2007; 102(5): 1064-9.
[http://dx.doi.org/10.1111/j.1572-0241.2007.01084.x] [PMID: 17313500]
[40]
Diniz-Santos DR, Jambeiro J, Mascarenhas RR, Silva LR. Massive Trichuris trichiura infection as a cause of chronic bloody diarrhea in a child. J Trop Pediatr 2006; 52(1): 66-8.
[http://dx.doi.org/10.1093/tropej/fmi073] [PMID: 16000342]
[41]
Qiu P, Ishimoto T, Fu L, Zhang J, Zhang Z, Liu Y. The gut microbiota in inflammatory bowel disease. Front Cell Infect Microbiol 2022; 12: 733992.
[PMID: 35273921]
[42]
Ng SC, Shi HY, Hamidi N, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: A systematic review of population-based studies. Lancet 2017; 390(10114): 2769-78.
[http://dx.doi.org/10.1016/S0140-6736(17)32448-0] [PMID: 29050646]
[43]
Oligschlaeger Y, Yadati T, Houben T, Condello Oliván CM, Shiri-Sverdlov R. Inflammatory bowel disease: A stressed “gut/feeling”. Cells 2019; 8(7): 659.
[http://dx.doi.org/10.3390/cells8070659] [PMID: 31262067]
[44]
Lopetuso LR, Ianiro G, Scaldaferri F, Cammarota G, Gasbarrini A. Gut virome and inflammatory bowel disease. Inflamm Bowel Dis 2016; 22(7): 1708-12.
[http://dx.doi.org/10.1097/MIB.0000000000000807] [PMID: 27206017]
[45]
Ramakrishna BS. Role of the gut microbiota in human nutrition and metabolism. J Gastroenterol Hepatol 2013; 28: 9-17.
[PMID: 24251697]
[46]
Allen-Vercoe E, Coburn B. A microbiota-derived metabolite augments cancer immunotherapy responses in mice. Cancer Cell 2020; 38(4): 452-3.
[http://dx.doi.org/10.1016/j.ccell.2020.09.005] [PMID: 32976777]
[47]
Stappenbeck TS, Virgin HW. Accounting for reciprocal host-microbiome interactions in experimental science. Nature 2016; 534(7606): 191-9.
[PMID: 27279212]
[48]
Lakatos PL. Recent trends in the epidemiology of inflammatory bowel diseases: Up or down? World J Gastroenterol 2006; 12(38): 6102-8.
[PMID: 17036379]
[49]
Hallen-Adams HE, Suhr MJ. Fungi in the healthy human gastrointestinal tract. Virulence 2017; 8(3): 352-8.
[PMID: 27736307]
[50]
Hoffmann C, Dollive S, Grunberg S, et al. Archaea and fungi of the human gut microbiome: Correlations with diet and bacterial residents. PLoS One 2013; 8(6): e66019.
[PMID: 23799070]
[51]
Dollive S, Chen YY, Grunberg S, et al. Fungi of the murine gut: Episodic variation and proliferation during antibiotic treatment. PLoS One 2013; 8(8): e71806.
[PMID: 23977147]
[52]
Auchtung TA, Fofanova TY, Stewart CJ, et al. Investigating colonization of the healthy adult gastrointestinal tract by fungi. MSphere 2018; 3(2): e00092-18.
[http://dx.doi.org/10.1128/mSphere.00092-18] [PMID: 29600282]
[53]
David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014; 505(7484): 559-63.
[PMID: 24336217]
[54]
McFarland LV. Systematic review and meta-analysis of Saccharomyces boulardii in adult patients. World J Gastroenterol 2010; 16(18): 2202-22.
[http://dx.doi.org/10.3748/wjg.v16.i18.2202] [PMID: 20458757]
[55]
Madoff SE, Urquiaga M, Alonso CD, Kelly CP. Prevention of recurrent Clostridioides difficile infection: A systematic review of randomized controlled trials. Anaerobe 2020; 61: 102098.
[http://dx.doi.org/10.1016/j.anaerobe.2019.102098] [PMID: 31493500]
[56]
Olendzki B, Bucci V, Cawley C, et al. Dietary manipulation of the gut microbiome in inflammatory bowel disease patients: Pilot study. Gut Microbes 2022; 14(1): 2046244.
[PMID: 35311458]
[57]
Hart L, Verburgt CM, Wine E, et al. Nutritional therapies and their influence on the intestinal microbiome in pediatric inflammatory bowel disease. Nutrients 2021; 14(1): 4.
[http://dx.doi.org/10.3390/nu14010004] [PMID: 35010879]
[58]
Kong C, Yan X, Liu Y, et al. Ketogenic diet alleviates colitis by reduction of colonic group 3 innate lymphoid cells through altering gut microbiome. Signal Transduct Target Ther 2021; 6(1): 154.
[PMID: 33888680]
[59]
Levine A, Wine E, Assa A, et al. Crohn’s disease exclusion diet plus partial enteral nutrition induces sustained remission in a randomized controlled trial. Gastroenterology 2019; 157(2): 440-450.e8.
[PMID: 31170412]
[60]
Ciubotaru I, Green SJ, Kukreja S, Barengolts E. Significant differences in fecal microbiota are associated with various stages of glucose tolerance in African American male veterans. Transl Res 2015; 166(5): 401-11.
[http://dx.doi.org/10.1016/j.trsl.2015.06.015] [PMID: 26209747]
[61]
Healy AR, Herzon SB. Molecular basis of gut microbiome-associated colorectal cancer: A synthetic perspective. J Am Chem Soc 2017; 139(42): 14817-24.
[http://dx.doi.org/10.1021/jacs.7b07807] [PMID: 28949546]
[62]
Liang X, Li H, Tian G, Li S. Dynamic microbe and molecule networks in a mouse model of colitis-associated colorectal cancer. Sci Rep 2014; 4(1): 4985.
[http://dx.doi.org/10.1038/srep04985] [PMID: 24828543]
[63]
Gargi A, Reno M, Blanke SR. Bacterial toxin modulation of the eukaryotic cell cycle: Are all cytolethal distending toxins created equally? Front Cell Infect Microbiol 2012; 2: 124.
[http://dx.doi.org/10.3389/fcimb.2012.00124] [PMID: 23061054]
[64]
Fedor Y, Vignard J, Nicolau-Travers ML, et al. From single-strand breaks to double-strand breaks during S-phase: A new mode of action of the Escherichia coli cytolethal distending toxin. Cell Microbiol 2013; 15(1): 1-15.
[PMID: 22978660]
[65]
van Elsland D, Neefjes J. Bacterial infections and cancer. EMBO Rep 2018; 19(11): e46632.
[http://dx.doi.org/10.15252/embr.201846632] [PMID: 30348892]
[66]
Nougayrède JP, Homburg S, Taieb F, et al. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 2006; 313(5788): 848-51.
[http://dx.doi.org/10.1126/science.1127059] [PMID: 16902142]
[67]
Balish E, Warner T. Enterococcus faecalis induces inflammatory bowel disease in interleukin-10 knockout mice. Am J Pathol 2002; 160(6): 2253-7.
[PMID: 12057927]
[68]
Deleu S, Machiels K, Raes J, Verbeke K, Vermeire S. Short chain fatty acids and its producing organisms: An overlooked therapy for IBD? EBioMedicine 2021; 66: 103293.
[PMID: 33813134]
[69]
Lee M, Chang EB. Inflammatory bowel diseases (IBD) and the microbiome-searching the crime scene for clues. Gastroenterology 2021; 160(2): 524-37.
[http://dx.doi.org/10.1053/j.gastro.2020.09.056] [PMID: 33253681]
[70]
Stensvold CR, van der Giezen M. Associations between gut microbiota and common luminal intestinal parasites. Trends Parasitol 2018; 34(5): 369-77.
[http://dx.doi.org/10.1016/j.pt.2018.02.004] [PMID: 29567298]
[71]
Eichenberger RM, Ryan S, Jones L, et al. Hookworm secreted extracellular vesicles interact with host cells and prevent inducible colitis in mice. Front Immunol 2018; 9: 850.
[PMID: 29760697]
[72]
Tito RY, Chaffron S, Caenepeel C, et al. Population-level analysis of Blastocystis subtype prevalence and variation in the human gut microbiota. Gut 2019; 68(7): 1180-9.
[http://dx.doi.org/10.1136/gutjnl-2018-316106] [PMID: 30171064]
[73]
Yamamoto-Furusho JK, Torijano-Carrera E. Intestinal protozoa infections among patients with ulcerative colitis: Prevalence and impact on clinical disease course. Digestion 2010; 82(1): 18-23.
[PMID: 20145404]
[74]
Audebert C, Even G, Cian A, et al. Colonization with the enteric protozoa Blastocystis is associated with increased diversity of human gut bacterial microbiota. Sci Rep 2016; 6(1): 25255.
[http://dx.doi.org/10.1038/srep25255] [PMID: 27147260]
[75]
Verstockt B, Vermeire S, Van Assche G, Ferrante M. When IBD is not IBD. Scand J Gastroenterol 2018; 53(9): 1085-8.
[http://dx.doi.org/10.1080/00365521.2018.1500637] [PMID: 30256685]
[76]
Vadlamudi N, Maclin J, Dimmitt RA, Thame KA. Cryptosporidial infection in children with inflammatory bowel disease. J Crohn’s Colitis 2013; 7(9): e337-43.
[PMID: 23415795]
[77]
Stensvold CR, Lebbad M, Victory EL, et al. Increased sampling reveals novel lineages of Entamoeba: Consequences of genetic diversity and host specificity for taxonomy and molecular detection. Protist 2011; 162(3): 525-41.
[http://dx.doi.org/10.1016/j.protis.2010.11.002] [PMID: 21295520]
[78]
D’Anchino M, Orlando D, De Feudis L. Giardia lamblia infections become clinically evident by eliciting symptoms of irritable bowel syndrome. J Infect 2002; 45(3): 169-72.
[http://dx.doi.org/10.1053/jinf.2002.1038] [PMID: 12387773]
[79]
Suhr MJ, Hallen-Adams HE. The human gut mycobiome: Pitfalls and potentials-A mycologist’s perspective. Mycologia 2015; 107(6): 1057-73.
[PMID: 26354806]
[80]
Richard ML, Sokol H. The gut mycobiota: Insights into analysis, environmental interactions and role in gastrointestinal diseases. Nat Rev Gastroenterol Hepatol 2019; 16(6): 331-45.
[PMID: 30824884]
[81]
Sokol H, Leducq V, Aschard H, et al. Fungal microbiota dysbiosis in IBD. Gut 2017; 66(6): 1039-48.
[http://dx.doi.org/10.1136/gutjnl-2015-310746] [PMID: 26843508]
[82]
Whibley N, Jaycox JR, Reid D, et al. Delinking CARD9 and IL-17: CARD9 protects against Candida tropicalis infection through a TNF-α–dependent, IL-17–independent mechanism. J Immunol 2015; 195(8): 3781-92.
[http://dx.doi.org/10.4049/jimmunol.1500870] [PMID: 26336150]
[83]
Maher CO, Dunne K, Comerford R, et al. Candida albicans stimulates IL-23 release by human dendritic cells and downstream IL-17 secretion by Vδ1 T cells. J Immunol 2015; 194(12): 5953-60.
[http://dx.doi.org/10.4049/jimmunol.1403066] [PMID: 25964489]
[84]
Ford AC, Peyrin-Biroulet L. Opportunistic infections with anti-tumor necrosis factor-α therapy in inflammatory bowel disease: Meta-analysis of randomized controlled trials. Am J Gastroenterol 2013; 108(8): 1268-76.
[PMID: 23649185]
[85]
Rath SK, Panja AK, Nagar L, Shinde A. The scientific basis of rasa (taste) of a substance as a tool to explore its pharmacological behavior. Anc Sci Life 2014; 33(4): 198-202.
[PMID: 25593398]
[86]
Ranade A, Gayakwad S, Chougule S, Shirolkar A, Gaidhani S, Pawar SD. Gut microbiota: Metabolic programmers as a lead for deciphering Ayurvedic pharmacokinetics. Curr Sci 2020; 119(3): 451-61.
[http://dx.doi.org/10.18520/cs/v119/i3/451-461]
[87]
Ranade AV, Shirolkar A, Pawar SD. Gut microbiota: One of the new frontiers for elucidating fundamentals of Vipaka in Ayurveda. Ayu 2019; 40(2): 75-8.
[PMID: 32398906]
[88]
Upadhyaya N, Suvitha SV, Yadav S, Yadav CR. A clinical utility of Prakriti parikshan- An ayurvedic diagnostic tool: A brief review. Int J Res Ayush Pharm Sci 2021; 5(2): 514-20.
[89]
Govindaraj P, Nizamuddin S, Sharath A, et al. Genome-wide analysis correlates Ayurveda Prakriti. Sci Rep 2015; 5: 15786.
[PMID: 26511157]
[90]
Chaudhari D, Dhotre D, Agarwal D, et al. Understanding the association between the human gut, oral and skin microbiome and the Ayurvedic concept of Prakriti. J Biosci 2019; 44(5): 112.
[http://dx.doi.org/10.1007/s12038-019-9939-6] [PMID: 31719221]
[91]
Arpaia N, Campbell C, Fan X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013; 504(7480): 451-5.
[http://dx.doi.org/10.1038/nature12726] [PMID: 24226773]
[92]
Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell 2014; 157(1): 121-41.
[http://dx.doi.org/10.1016/j.cell.2014.03.011] [PMID: 24679531]
[93]
Li S, Jin M, Wu Y, et al. An efficient enzyme-triggered controlled release system for colon-targeted oral delivery to combat dextran sodium sulfate (DSS)-induced colitis in mice. Drug Deliv 2021; 28(1): 1120-31.
[PMID: 34121560]
[94]
van der Lelie D, Oka A, Taghavi S, et al. Rationally designed bacterial consortia to treat chronic immune-mediated colitis and restore intestinal homeostasis. Nat Commun 2021; 12(1): 3105.
[http://dx.doi.org/10.1038/s41467-021-23460-x] [PMID: 34050144]
[95]
Lee Y, Sugihara K, Gillilland MG III, Jon S, Kamada N, Moon JJ. Hyaluronic acid-bilirubin nanomedicine for targeted modulation of dysregulated intestinal barrier, microbiome and immune responses in colitis. Nat Mater 2020; 19(1): 118-26.
[PMID: 31427744]
[96]
Levine A, Sigall Boneh R, Wine E. Evolving role of diet in the pathogenesis and treatment of inflammatory bowel diseases. Gut 2018; 67(9): 1726-38.
[http://dx.doi.org/10.1136/gutjnl-2017-315866] [PMID: 29777041]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy