Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Editorial

Biofabricated Polymeric Hybridome: A Novel Innovative Biomaterial for Drug-Resistant Tuberculosis

Author(s): Dilpreet Singh*

Volume 20, Issue 2, 2025

Published on: 21 August, 2024

Page: [119 - 121] Pages: 3

DOI: 10.2174/0115748855324006240817122507

Next »
[1]
Salari N, Kanjoori AH, Hosseinian-Far A, Hasheminezhad R, Mansouri K, Mohammadi M. Global prevalence of drug-resistant tuberculosis: a systematic review and meta-analysis. Infect Dis Poverty 2023; 12(1): 57.
[http://dx.doi.org/10.1186/s40249-023-01107-x] [PMID: 37231463]
[2]
Vanino E, Granozzi B, Akkerman OW, et al. Update of drug-resistant tuberculosis treatment guidelines: A turning point. Int J Infect Dis 2023; 130 (Suppl. 1): S12-5.
[http://dx.doi.org/10.1016/j.ijid.2023.03.013] [PMID: 36918080]
[3]
Farhat M, Cox H, Ghanem M, et al. Drug-resistant tuberculosis: a persistent global health concern. Nat Rev Microbiol 2024; 1-9.
[http://dx.doi.org/10.1038/s41579-024-01025-1] [PMID: 38519618]
[4]
Pedersen OS, Holmgaard FB, Mikkelsen MKD, et al. Global treatment outcomes of extensively drug-resistant tuberculosis in adults: A systematic review and meta-analysis. J Infect 2023; 87(3): 177-89.
[http://dx.doi.org/10.1016/j.jinf.2023.06.014] [PMID: 37356629]
[5]
Su T, Liu X, Lin S, Cheng F, Zhu G. Ionizable polymeric nanocarriers for the codelivery of bi-adjuvant and neoantigens in combination tumor immunotherapy. Bioact Mater 2023; 26: 169-80.
[http://dx.doi.org/10.1016/j.bioactmat.2023.02.016] [PMID: 36883121]
[6]
Listek M, Hönow A, Gossen M, Hanack K. Comment on “Monoclonal Antibody Discovery Based on Precise Selection of Single Transgenic Hybridomas with an On-Cell-Surface and Antigen-Specific Anchor”. ACS Appl Mater Interfaces 2023; 15(37): 43219-22.
[http://dx.doi.org/10.1021/acsami.3c05317] [PMID: 37676755]
[7]
Jangid AK, Kim S, Kim K. Polymeric biomaterial-inspired cell surface modulation for the development of novel anticancer therapeutics. Biomater Res 2023; 27(1): 59.
[http://dx.doi.org/10.1186/s40824-023-00404-8] [PMID: 37344853]
[8]
Nguyen TNH, Goux D, Follet-Gueye ML, et al. Generation and characterization of two new monoclonal antibodies produced by immunizing mice with plant fructans: New tools for immunolocalization of β-(2 → 1) and β-(2 → 6) fructans. Carbohydr Polym 2024; 327: 121682.
[http://dx.doi.org/10.1016/j.carbpol.2023.121682] [PMID: 38171691]
[9]
Pal R, Pandey P, Nogai L. The Advanced Approach in The Development of Targeted Drug Delivery (TDD) With Their Bio-Medical Applications: A Descriptive Review. Int Neurourol J 2023; 27(4): 40-58.
[10]
Sarkar S, Mishra A, Periasamy S, et al. Prospective subunit nanovaccine against mycobacterium tuberculosis infection— cubosome lipid nanocarriers of cord factor, trehalose 6, 6′ dimycolate. ACS Appl Mater Interfaces 2023; 15(23): 27670-86.
[http://dx.doi.org/10.1021/acsami.3c04063] [PMID: 37262346]
[11]
Balducci E, Papi F, Capialbi DE, Del Bino L. Polysaccharides’ structures and functions in biofilm architecture of antimicrobial-resistant (AMR) pathogens. Int J Mol Sci 2023; 24(4): 4030.
[http://dx.doi.org/10.3390/ijms24044030] [PMID: 36835442]
[12]
Joseph N, Shapiro A, Gillis E, et al. Biodistribution and function of coupled polymer-DNA origami nanostructures. Sci Rep 2023; 13(1): 19567.
[http://dx.doi.org/10.1038/s41598-023-46351-1] [PMID: 37949918]
[13]
Sanjanwala D, Patravale V. Aptamers and nanobodies as alternatives to antibodies for ligand-targeted drug delivery in cancer. Drug Discov Today 2023; 28(5): 103550.
[http://dx.doi.org/10.1016/j.drudis.2023.103550] [PMID: 36906220]
[14]
Panda P, De M, Basak S. Nanocochleates: A novel lipid-based nanocarrier system for drug delivery. In: Design and Applications of Theranostic Nanomedicines. Woodhead Publishing 2023.
[15]
Gupta U, Goyal AK, Eds. Molecular Pharmaceutics and Nano Drug Delivery: Fundamentals and Challenges. Academic Press 2023.
[16]
Das SK, Chakraborty S, Bhowmik S, Roy S, Pathak Y. Polymeric Nanoparticles in Tuberculosis. In: Tubercular Drug Delivery Systems: Advances in Treatment of Infectious Diseases. Springer International Publishing 2023.
[http://dx.doi.org/10.1007/978-3-031-14100-3_5]
[17]
Gopinathan A, Naik SS, Leela KV, Ravi S. Nano‐Based Drug Delivery in Eliminating Tuberculosis. In: Advances in Novel Formulations for Drug Delivery. Wiley Online Library 2023.
[http://dx.doi.org/10.1002/9781394167708.ch11]
[18]
Shao Z, Chow MYT, Chow SF, Lam JKW. Co-delivery of D-LAK antimicrobial peptide and capreomycin as inhaled powder formulation to combat drug-resistant tuberculosis. Pharm Res 2023; 40(5): 1073-86.
[http://dx.doi.org/10.1007/s11095-023-03488-y] [PMID: 36869245]
[19]
Pushkar S, Varshney V, Pushkar P, Sagar HK. Novel approaches for the treatment of drug-resistant tuberculosis. Pharmacognosy Res 2023; 15(2): 235-41.
[http://dx.doi.org/10.5530/pres.15.2.025]
[20]
Zorba Yildiz AP, Yildirim Koken G, Abamor ES, et al. Polymeric approach to adjuvant system in antibody production against Leishmaniasis based on Hybridoma technology. Iran J Parasitol 2022; 17(4): 506-16.
[http://dx.doi.org/10.18502/ijpa.v17i4.11278] [PMID: 36660415]

© 2024 Bentham Science Publishers | Privacy Policy