Generic placeholder image

Recent Innovations in Chemical Engineering

Editor-in-Chief

ISSN (Print): 2405-5204
ISSN (Online): 2405-5212

Mini-Review Article

Advances in Monazite Decomposition Technologies: Proposed Potential Direction for the Sodium Hydroxide Leaching Context

Author(s): Hoang Xuan Thi*, Hoang Nhuan, Ngo Van Tuyen, Vuong Huu Anh and Nguyen Huu duc

Volume 17, Issue 4, 2024

Published on: 08 August, 2024

Page: [256 - 280] Pages: 25

DOI: 10.2174/0124055204299715240802065930

Price: $65

Abstract

The current understanding and development of monazite decomposition technology using sodium hydroxide are examined. Most previous assessments have primarily focused on the post-leaching processing of monazite using sodium hydroxide, including processing steps to produce the total rare earth oxide product. However, the initial leaching process of monazite with alkali solution proves to be highly significant in practice. It presents numerous problems, such as the requirement for fine grinding of the ore down to below 45 microns, substantial alkali excess, and extended reaction times to achieve the desired efficiency. These requirements result in increased energy, chemical, and equipment costs. This article is focused on discussing the leaching conditions of monazite with alkali solution based on published literature, the problems associated with this process, the underlying reasons, newly proposed variations such as sodium hydroxide leaching under pressure and sodium hydroxide leaching in a heated ball mill, limitations of these variations, and unresolved issues. Furthermore, the manuscript introduces a novel technique, high-intensity ultrasound, to support the leaching process, which has been applied in technological cases. The discussion delves into the mechanisms of high-intensity ultrasound and its applicability in the monazite leaching process using sodium hydroxide.

Keywords: Monazite decomposition, sodium hydroxide, high-intensity ultrasound, leaching, earth minerals, monazite.

Graphical Abstract
[1]
Mineral Commodity Summaries 2024. Available from: https://pubs.usgs.gov/publication/mcs2024
[2]
Kumari A, Jha M, Hait J, Sahu SK, Kumar V. Processing of Korean monazite concentrate for the recovery of rare earth metals (REMs). J Indian Chem Soc 2013; 90: 2105-10.
[3]
Hedrick JJR. US Geological Survey, 983 National Center. 2004.
[4]
Teixeira LAV, Silva RG, Avelar A, Majuste D. Selective extraction of rare earth elements from monazite ores with high iron content. Metall Explor 2019; 36(1): 235-44.
[http://dx.doi.org/10.1007/s42461-018-0035-5]
[5]
Susilo YSB. Regulation review of radioactive mineral as by product of tin mining activities to accelerate industrialization process AIP Conf Proc 2024; 2967(1).
[http://dx.doi.org/10.1063/5.0192848]
[6]
Widana KS, Faizah Y, Pratiwi F, Sumaryanto A, Manawan M. Beneficiation and characterization of low-grade monazite from Bangka tin mining post processing AIP Conf Proc 2024; 2967(1).
[http://dx.doi.org/10.1063/5.0192972]
[7]
Aplan F. The processing of rare earth minerals. In: Rare Earths. Extraction. Preparation and Applications 1989; pp. 15-34.
[8]
Krishnamurthy N, Gupta CK. Extractive Metallurgy of Rare Earths. (2nd ed.), CRC Press 2015.
[http://dx.doi.org/10.1201/b19055]
[9]
Rajagopalan P. High-pressure hydrometallurgy of uranium and thorium. Indian Min J 1957; 5(4): 11.
[10]
Mirson G. Alkaline leaching of monazite. At Energ 1957; 3(9): 259-64.
[11]
Cuthbert FL. Thorium production technology. Addison-Wesley Pub. Co. 1958.
[12]
Kaplan G. Alkaline processing of monazite and zircon. Proceedings of the international conference on the peaceful uses of atomic energy Geneva 1958; vol. 3( no. 1, ): 274-81.
[13]
Kaplan G, Uspenskaya T, Zarembo Yu I, Chirkov I. Thorium, its Raw Resources, Chemistry and Technology. Moscow: Atomizdat 1960.
[14]
Welt M, Smutz M. Processing methods of monazite sands. JOM 1960; 19: 321.
[15]
Zelikman A. Metallurgy of rare earth. Moscow, Russian Federation: Metallurgizdat 1963.
[16]
Farah M. Reactor grade uranium from Egyptian monazite by newer techniques. Proceedings of the international conference on the peaceful uses of atomic energy. Geneva. 1964; pp. vol. 12: 147-56.
[17]
Sinyaver B. Autoclave processes in nonferrous metallurgy, metallurgy of nonferrous metals and gold. Moscow: Nonfer. Metal Inf 1966; pp. 171-85.
[18]
Hilal O, Kiwan A. Extraction of uranium from monazite after separation of thorium and rare earths. Cairo: National Research Center 1968.
[19]
Anwar Y, Abdel-Rehim A. Extraction of thorium from Egyptian monazite. Bull Fac Sci Alex Univ 1970; 10: 152-71.
[20]
Doyle FM, Duyvesteyn S. Aqueous processing of minerals, metals, and materials. J Miner Met Mater Soc 1993; 45(4): 46-54.
[http://dx.doi.org/10.1007/BF03223287]
[21]
Habashi F. A textbook of hydrometallurgy. Quebec City: Extractive Metallurgy Quebec 1999.
[22]
Fernelius W. Inorganic Synthesis Volume II,. McGraw-hill book company 1946; 1-293.
[23]
Barghusen J, Smutz M. Processing of monazite sands. Ind Eng Chem 1958; 50(12): 1754-5.
[http://dx.doi.org/10.1021/ie50588a031]
[24]
Borrowman SR, Rosenbaum J. Recovery of thorium from a Wyoming ore. US Department of the Interior, Bureau of Mines 1962.
[25]
Kim E, Osseo-Asare K. Aqueous stability of thorium and rare earth metals in monazite hydrometallurgy: Eh–pH diagrams for the systems Th–, Ce–, La–, Nd– (PO4)–(SO4)–H2O at 25 °C. Hydrometallurgy 2012; 113-114: 67-78.
[http://dx.doi.org/10.1016/j.hydromet.2011.12.007]
[26]
Shaw VE, Bauer DJ. Extraction and Separation of Rare-earth Elements in Idaho Euxenite Concentrate. US Department of the Interior, Bureau of Mines 1965.
[27]
Smutz M, Bridger G, Shaw K, Whatley M. The ames process for separation of monazite. nuclear engineering, part III. Chem Eng Progr Symposium Ser 1954.
[28]
Pilkington ES, Wylie AW. Production of rare earth and thorium compounds from monazite. Part I. J Soc Chem Ind 1947; 66(11): 387-94.
[http://dx.doi.org/10.1002/jctb.5000661103]
[29]
Pilkington ES, Wylie AW. Production of lanthanon and thorium compounds from monazite. II. J Appl Chem 1952; 2(5): 265-73.
[http://dx.doi.org/10.1002/jctb.5010020509]
[30]
Pilkington ES, Wylie AW. Production of lanthanon and thorium compounds from monazite. III. Preparation of pure thorium nitrate. J Appl Chem 1954; 4(10): 568-80.
[http://dx.doi.org/10.1002/jctb.5010041008]
[31]
Welt MA, Morton S. Method of processing monazite sand U.S. Patent 2811411A,,, 1958.
[32]
Parker JG, Baroch CT. The rare-earth elements, yttrium, and thorium: A materials survey. US Bureau of Mines 1971.
[33]
Gupta CK, Krishnamurthy N. Extractive metallurgy of rare earths. Int Mater Rev 1992; 37(1): 197-248.
[http://dx.doi.org/10.1179/imr.1992.37.1.197]
[34]
Kumari A, Panda R, Jha MK, Kumar JR, Lee JY. Process development to recover rare earth metals from monazite mineral: A review. Min Eng 2015; 79: 102-15.
[http://dx.doi.org/10.1016/j.mineng.2015.05.003]
[35]
Peelman S, Sun ZHI, Sietsma J, Yang Y. Leaching of rare earth elements. In: Rare Earths Industry. Elsevier 2016; pp. 319-34.
[http://dx.doi.org/10.1016/B978-0-12-802328-0.00021-8]
[36]
Lucas J, Lucas P, Le Mercier T, Rollat A, Davenport WG. Rare earths: Science, technology, production and use. Elsevier 2014; p. 51.
[37]
Kaplan G, Uspenskaya T, Zarembo Yu I, Chirkov IJMA. Thorium, its Raw Resources. Chemistry and Technology 1960.
[38]
Zelikman A. Metallurgy of Rare-Earth Metals, Thorium and Uranium. Moscow: Metallurgizdat 1961.
[39]
Benedict M, Pigford T, Levi H. Fuel reprocessing. Nuclear Chemical Engineering 1981; pp. 457-564.
[40]
Melard P. Quality control on an industrial scale at the la rochelle rare earths plant. In: The Rare Earths in Modern Science and Technology. Springer 1980; pp. 517-26.
[http://dx.doi.org/10.1007/978-1-4613-3054-7_97]
[41]
Sulaiman MY. An overview of the rare-earth mineral processing industry in Malaysia. Mater Sci Forum 1991; 70-72: 389-96.
[http://dx.doi.org/10.4028/www.scientific.net/MSF.70-72.389]
[42]
De RC, Maurice P. Treatment of monazite. U.S. Patent US2783125A, 1957.
[43]
Ney C, Tauhata L, Oliveira Filho D. Dose equivalent estimate of works in a Brazilian monazite sand plant. 8 International congress of the International Radiation Protection Association (IRPA8), 1992 17-22.
[44]
da Costa Lauria D. Rochedo ERJRd. The legacy of monazite processing in Brazil. Radiat Prot Dosimetry 2005; 114(4): 546-50.
[http://dx.doi.org/10.1093/rpd/nci303]
[45]
Zang ZB, King LKY, Chu K, Cheng WW, Cheng WWJH. Rare earth industry in China. Hydrometallurgy 1982; 9(2): 205-10.
[http://dx.doi.org/10.1016/0304-386X(82)90017-2]
[46]
Narajanan N, Thulasidoss S, Ramachandran T, Swaminathan T, Prasad K. Processing of Monazite at the Rare Earths Division, Udyogamandal. MSF 1991; 30: 45-56.
[47]
Miao Y, Horng J. Decomposition of Taïwan local black monazite by hydrothermal and soda fusion methods. In: Rare earths. Taiwan: Institute of Nuclear Energy Research, CAEC Lung-Tan 1988.
[48]
Mcerson G, Kaplan G, Uspenskaia TJTSJAE. An improved process for the caustic soda decomposition of monazite. In: Sov. J At Energy 1957; 3: 1054-6.
[http://dx.doi.org/10.1007/BF01515747]
[49]
Suslick KS, Nyborg WL. Ultrasound: Its chemical, physical and biological effects. Acoustical Society of America 1990.
[http://dx.doi.org/10.1121/1.398864]
[50]
Leighton T. The acoustic bubble. Academic press 2012.
[51]
Mason T J. Uses of power ultrasound in chemistry and processing . Applied sonochemistry 2002.
[52]
Lévêque J-M, Cravotto G, Delattre F, Cintas P. Cavitation and chemical reactivity. In: Lévêque J-M, Cravotto G, Delattre F, Cintas P, Eds. Organic Sonochemistry: Challenges and Perspectives for the 21st Century. Cham: Springer 2018; pp. 1-16.
[http://dx.doi.org/10.1007/978-3-319-98554-1_1]
[53]
Suslick KS. The chemical effects of ultrasound. Sci Am 1989; 260(2): 80-6.
[http://dx.doi.org/10.1038/scientificamerican0289-80]
[54]
Riesz P, Kondo T, Krishna CM. Sonochemistry of volatile and non-volatile solutes in aqueous solutions: E.p.r. and spin trapping studies. Ultrasonics 1990; 28(5): 295-303.
[http://dx.doi.org/10.1016/0041-624X(90)90035-M] [PMID: 2203196]
[55]
Xu H, Zeiger BW, Suslick KS. Sonochemical synthesis of nanomaterials. Chem Soc Rev 2013; 42(7): 2555-67.
[http://dx.doi.org/10.1039/C2CS35282F] [PMID: 23165883]
[56]
Swamy KM, Narayana KL. Ultrasonically assisted leaching. Adv Sonochem 2001; 6: 141-79.
[http://dx.doi.org/10.1016/S1569-2868(01)80008-5]
[57]
Polyukhin P. The Use of Ultrasonics in Extractive Metallurgy. Stonehouse, UK: Technicopy 1978.
[58]
Diez-Barra E, De la Hoz A, Sánchez-Migallón A, Tejeda JJH. Phase transfer catalysis without solvent. Synthesis of bisazolylalkanes. In: Heterocycles. 1992; 34: pp. (7)1365-73.
[59]
Chen B, Bao S, Zhang Y, Li SJS, Technology P. A high-efficiency and sustainable leaching process of vanadium from shale in sulfuric acid systems enhanced by ultrasound. Sep Purif Technol 2020; 240: 116624.
[http://dx.doi.org/10.1016/j.seppur.2020.116624]
[60]
Zhu R, Wang S, Chen Y, et al. Ultrasound enhanced in-situ chemical oxidation for leaching Ag from zinc leaching residue and response surface optimization. Chem Eng J 2024; 489: 151243.
[http://dx.doi.org/10.1016/j.cej.2024.151243]
[61]
Zhang H, Ou X, Sun Y, Xiang Y, Yang S, Chen Z. Leaching of palladium from spent Pd/Al2O3 catalysts by coupled ultrasound-microwave technique. Separ Purif Tech 2024; 346: 127492.
[http://dx.doi.org/10.1016/j.seppur.2024.127492]
[62]
Zhang F, Qin Y, Zhang M, et al. Highly selective extraction of Pd from nuclear glass waste through the combination of ultrasound-assisted acid leaching and solid phase adsorption. Separ Purif Tech 2024; 339: 126646.
[http://dx.doi.org/10.1016/j.seppur.2024.126646]
[63]
Chen Y, Xiang D, Zhu M, et al. Mechanism and kinetics of ultrasound enhanced removal of arsenic from high alkali leaching solution for alkali recovery. Chem Eng J 2024; 489: 151299.
[http://dx.doi.org/10.1016/j.cej.2024.151299]
[64]
Chen Y, Lin G, Wang S, et al. Ultrasonic-enhanced selective arsenic removal and sulfide conversion from iron slag. J Clean Prod 2024; 450: 141885.
[http://dx.doi.org/10.1016/j.jclepro.2024.141885]
[65]
Ma A, Li J, Chang J, Zheng X. Mechanism analysis and experimental research on leaching zn from zinc oxide dust with an ultrasound-enhanced NH3-NH4Cl-H2O system. Sustainability 2024; 16(7): 2901.
[http://dx.doi.org/10.3390/su16072901]
[66]
Wan Y, Xin C, Ding W, Zhang H, Yang H, Bao S. Kinetics and mechanism of ultrasonic-enhanced mixed acid leaching of zinc from zinc-bearing dust. J Environ Chem Eng 12(5)2024; : 113246.
[http://dx.doi.org/10.1016/j.jece.2024.113246]
[67]
Liu B. Clean and ultrafast recovery of Zn from waste galvanized iron sheet by ultrasound-assisted acid pickling and ion flotation techniques. SSRN 2024.
[http://dx.doi.org/10.2139/ssrn.4816752]
[68]
Sun G. Mechanism and kinetic analysis of ultrasonic cavitation-assisted ozone dissolution of copper. J Sustain Metall 2024; pp. 1-14.
[http://dx.doi.org/10.1007/s40831-024-00784-8]
[69]
Marin Rivera R, Elgar CE, Jacobson B, et al. Ultra-fast extraction of metals from a printed circuit board using high power ultrasound in a calcium chloride-based deep eutectic solvent. RSC Sustainability 2024; 2(2): 403-15.
[http://dx.doi.org/10.1039/D3SU00147D]
[70]
Zhu C, Hu X, Lei Y, et al. Investigation on kinetics and mechanism of energy dissipation by ultrasound-assisted leaching of low-nickel matte. J Miner Met Mater Soc 2024; 76(1): 418-31.
[http://dx.doi.org/10.1007/s11837-023-06260-0]
[71]
Zhang Y, Chu Q, Liu B, Han G, Huang Y. Intensifying acid leaching behaviors of Fe, Ni, and Cr from stainless-steel scraps via ultrasonic treatment. In: TMS Annual Meeting & Exhibition. Springer 2024 527-36.
[http://dx.doi.org/10.1007/978-3-031-50304-7_51]
[72]
Mhandu TJ. Ammonium thiosulfate leaching of arsenic-bearing refractory gold ores. Hokkaido University 2024.
[73]
Liu J, Chen H, Zhang M. Mg2+ leaching and Co2 sequestration of magnesium tailings enhanced by external field coupled with pretreatment. SSRN 2024.
[http://dx.doi.org/10.2139/ssrn.4763920]
[74]
Li S, Wang H, Wang S, Xie F. Study on the kinetics and mechanism of ultrasonic-microwave synergistic enhancement for leaching indium from zinc oxide dust. Chem Zvesti 2024; 78(6): 3667-85.
[http://dx.doi.org/10.1007/s11696-024-03338-0]
[75]
Huang YF, Hsia WN, Lo SL. Ultrasound-assisted leaching and supported liquid membrane extraction of waste liquid crystal displays for indium recovery. Sustain Chem Pharm 2023; 35: 101227.
[http://dx.doi.org/10.1016/j.scp.2023.101227]
[76]
Guedes P, Mateus EP, Alshawabkeh AN, Ribeiro AB. Ultrasound-assisted electrodialytic separation of cobalt from tungsten carbide scrap powder. Sustain Chem Pharm 2024; 38: 101471.
[http://dx.doi.org/10.1016/j.scp.2024.101471]
[77]
Liu B, Shi C, Huang Y, Han G, Sun H, Zhang L. Intensifying separation of Pb and Sn from waste Pb-Sn alloy by ultrasound-assisted acid leaching: Selective dissolution and sonochemistry mechanism. Ultrason Sonochem 2024; 102: 106758.
[http://dx.doi.org/10.1016/j.ultsonch.2024.106758] [PMID: 38219552]
[78]
Liu B, Chu Q, Huang Y, Han G, Sun H, Zhang L. Ultrasound-assisted extraction of Sn from tinplate scraps by alkaline leaching: Novel acoustoelectric synergy effect underlying intensifying mechanism. Ultrason Sonochem 2023; 100: 106631.
[http://dx.doi.org/10.1016/j.ultsonch.2023.106631] [PMID: 37837707]
[79]
Liu B, Duan L, Cai S, et al. A clean and efficient route for extraction of vanadium from vanadium slag by electro-oxidation combined with ultrasound cavitation. Ultrason Sonochem 2024; 102: 106735.
[http://dx.doi.org/10.1016/j.ultsonch.2023.106735] [PMID: 38128390]
[80]
Li H, Ren Q, Tian J, et al. Efficient recovery of vanadium from calcification roasted-acid leaching tailings enhanced by ultrasound in H2SO4-H2O2 system. Miner Eng 2024; 205: 108492.
[http://dx.doi.org/10.1016/j.mineng.2023.108492]
[81]
Li H. Mechanism and kinetics study of vanadium leaching from landfilled metallurgical residues by ultrasonic with ozonation enhancement in a low-acid medium. SSRN 2024.
[http://dx.doi.org/10.1016/j.ultsonch.2024.106998]
[82]
Xia H. Study on ultrasonic intensive leaching of germanium from germanium concentrate. Preprints 2023.
[83]
Liang M, Di H, Hong Y, et al. Physical effect of ultrasonic on leaching system of zinc oxide dust containing germanium. Int J Chem React Eng 2023; 21(11): 1433-41.
[http://dx.doi.org/10.1515/ijcre-2023-0042]
[84]
Yuan Y, Yu X, Shen Q, Zhao Q, Li Y, Wu T. A novel approach for ultrasonic assisted organic acid leaching of waste lithium-containing aluminum electrolyte and recovery of lithium. Chem Eng Process 2023; 192: 109508.
[http://dx.doi.org/10.1016/j.cep.2023.109508]
[85]
Nshizirungu T, Rana M, Jo YT, Uwiragiye E, Kim J, Park JH. Ultrasound-assisted sustainable recycling of valuable metals from spent Li-ion batteries via optimisation using response surface methodology. J Environ Chem Eng 2024; 12(2): 112371.
[http://dx.doi.org/10.1016/j.jece.2024.112371]
[86]
Zhao Y, Wang YH, Wu JJ, Ma WH. Study on the behavior of impurity removal from lithium-iron-phosphate slag using the ultrasonic-assisted sulphuric acid leaching. J Min Metall Sect B: Metall 2024; 60(1): 59-70.
[http://dx.doi.org/10.2298/JMMB230810005Z]
[87]
Shi Y, Zhu B, Guo X, et al. MOF-derived metal sulfides for electrochemical energy applications. Energy Storage Mater 2022; 51: 840-72.
[http://dx.doi.org/10.1016/j.ensm.2022.07.027]
[88]
Pi Y, Qiu Z, Sun Y, et al. Synergistic mechanism of sub‐nanometric ru clusters anchored on tungsten oxide nanowires for high‐efficient bifunctional hydrogen electrocatalysis. Adv Sci 2023; 10(7): 2206096.
[http://dx.doi.org/10.1002/advs.202206096] [PMID: 36594619]
[89]
Cao S, Li Y, Tang Y, et al. Space‐confined metal ion strategy for carbon materials derived from cobalt benzimidazole frameworks with high desalination performance in simulated seawater. Adv Mater 2023; 35(23): 2301011.
[http://dx.doi.org/10.1002/adma.202301011] [PMID: 36990112]
[90]
Tyagi VK, Lo SL, Appels L, Dewil R. Ultrasonic treatment of waste sludge: A review on mechanisms and applications. Crit Rev Environ Sci Technol 2014; 44(11): 1220-88.
[http://dx.doi.org/10.1080/10643389.2013.763587]
[91]
Chuah LF, Klemeš JJ, Yusup S, Bokhari A, Akbar MM. A review of cleaner intensification technologies in biodiesel production. J Clean Prod 2017; 146: 181-93.
[http://dx.doi.org/10.1016/j.jclepro.2016.05.017]
[92]
Chuah LF, Mohd Amin M, Yusup S, et al. Influence of green catalyst on transesterification process using ultrasonic-assisted. J Clean Prod 2016; 136: 14-22.
[http://dx.doi.org/10.1016/j.jclepro.2016.05.003]
[93]
Tabatabaei M, Aghbashlo M, Dehhaghi M, et al. Reactor technologies for biodiesel production and processing: A review. Pror Energy Combust Sci 2019; 74: 239-303.
[http://dx.doi.org/10.1016/j.pecs.2019.06.001]
[94]
Al-Sharrah G, Marafi M. Process simulation and techno-economic evaluation of recovery of metals and alumina from spent hydroprocessing catalysts using leaching with EDTA. J Eng Res 2024; 12(1): 36-41.
[95]
Al-Sheeha H, Marafi M, Raghavan V, Rana MS. Recycling and recovery routes for spent hydroprocessing catalyst waste. Ind Eng Chem Res 2013; 52(36): 12794-801.
[http://dx.doi.org/10.1021/ie4019148]
[96]
Marafi M, Furimsky E. Hydroprocessing catalysts containing noble metals: Deactivation, regeneration, metals reclamation, and environment and safety. Energy Fuels 2017; 31(6): 5711-50.
[http://dx.doi.org/10.1021/acs.energyfuels.7b00471]
[97]
Marafi M. Role of EDTA on metal removal from refinery waste catalysts. WIT Trans Ecol Environ 2019; 231: 137-47.
[98]
Vinatoru M. An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason Sonochem 2001; 8(3): 303-13.
[http://dx.doi.org/10.1016/S1350-4177(01)00071-2] [PMID: 11441615]
[99]
Samarakone S. The sonochemical extraction of monazite using sulfuric acid. Polytechnique montréal 2023.
[100]
Hackl R, Dreisinger D, Peters E, King JJH. Passivation of chalcopyrite during oxidative leaching in sulfate media. Hydrometallurgy 1995; 39(1-3): 25-48.
[http://dx.doi.org/10.1016/0304-386X(95)00023-A]
[101]
Córdoba E, Muñoz J, Blázquez M, González F, Ballester AJME. Passivation of chalcopyrite during its chemical leaching with ferric ion at 68°C. Miner Eng 2009; 22(3): 229-35.
[http://dx.doi.org/10.1016/j.mineng.2008.07.004]
[102]
Stott M, Watling H, Franzmann P. Sutton DJMe. The role of iron-hydroxy precipitates in the passivation of chalcopyrite during bioleaching. Miner Eng 2000; 13(10-11): 1117-27.
[http://dx.doi.org/10.1016/S0892-6875(00)00095-9]
[103]
Parker A, Klauber C, Kougianos A, Watling H, Van Bronswijk WJH. An X-ray photoelectron spectroscopy study of the mechanism of oxidative dissolution of chalcopyrite. Hydrometallurgy 2003; 71(1-2): 265-76.
[http://dx.doi.org/10.1016/S0304-386X(03)00165-8]
[104]
Carneiro MFC, Leão VAJH. The role of sodium chloride on surface properties of chalcopyrite leached with ferric sulphate. Hydrometallurgy 2007; 87(3-4): 73-82.
[http://dx.doi.org/10.1016/j.hydromet.2007.01.005]
[105]
Viramontes-Gamboa G, Peña-Gomar MM, Dixon DGJH. Electrochemical hysteresis and bistability in chalcopyrite passivation. Hydrometallurgy 2010; 105(1-2): 140-7.
[http://dx.doi.org/10.1016/j.hydromet.2010.08.012]
[106]
Xian YJ, Wen SM, Deng JS, Liu J, Nie Q. Leaching chalcopyrite with sodium chlorate in hydrochloric acid solution. Can Metall Q 2012; 51(2): 133-40.
[http://dx.doi.org/10.1179/1879139512Y.0000000001]
[107]
Yoon H-S. Ultrasonic-assisted leaching kinetics in aqueous FeCl3-HCl solution for the recovery of copper by hydrometallurgy from poorly soluble chalcopyrite. Korean J Chem Eng 2017; 34: 1748-55.
[http://dx.doi.org/10.1007/s11814-017-0053-x]
[108]
Zhang D, Fu L, Liu H, et al. High-efficiency leaching of chalcopyrite by ozone with ultrasonic promotion: Kinetics and mechanism. J Mol Liq 2024; 401: 124682.
[http://dx.doi.org/10.1016/j.molliq.2024.124682]
[109]
Udayakumar S, Baharun N, Rezan SA, Ismail AF, Mohamed Takip K. Economic evaluation of thorium oxide production from monazite using alkaline fusion method. Nucl Eng Technol 2021; 53(7): 2418-25.
[http://dx.doi.org/10.1016/j.net.2021.01.028]
[110]
Mohd Salehuddin AHJ, Ismail AF, Che Zainul Bahri CNA, Aziman ES. Economic analysis of thorium extraction from monazite. Nucl Eng Technol 2019; 51(2): 631-40.
[http://dx.doi.org/10.1016/j.net.2018.11.005]
[111]
Mukhlis RZ, Lee J-Y, Kang HN, et al. Techno-economic evaluation of an environmental-friendly processing route to extract rare earth elements from monazite. Clean Eng Technol 2024; 20: 100742.
[http://dx.doi.org/10.1016/j.clet.2024.100742]
[112]
Pathak H. Energy requirements of self dependent India and contribution of thorium 2021.
[113]
Hussain W. Thorium based indian nuclear program. Nucleus 2023; 60(1): 60-4.
[114]
V. Đ T. Research on technology for recovering total rare earth oxides, Th, and U from Vietnamese monazite ore by the method of roasting ore decomposition with sulfuric acid, 2024.https://www.vista.gov.vn/news/khoa-hoc-ky-thuat-va-cong-nghe/nghien-cuu-cong-nghe-thu-nhan-tong-oxit-dat-hiem-th-va-u-tu-quang-monazit-viet-nam-bang-phuong-phap-nung-phan-huy-quang-voi-axit-sunphuric-855.html
[115]
Findeiß M, Schäffer A. Fate and environmental impact of thorium residues during rare earth processing. J Sustainable Metall 2017; 3(1): 179-89.
[http://dx.doi.org/10.1007/s40831-016-0083-3]
[116]
Aziman ES, Ismail AF, Rahmat MA. Balancing economic growth and environmental protection: A sustainable approach to Malaysia’s rare-earth industry. Resour Policy 2023; 83: 103753.
[http://dx.doi.org/10.1016/j.resourpol.2023.103753]
[117]
Ji J, Lu X, Cai M, Xu Z. Improvement of leaching process of Geniposide with ultrasound. Ultrason Sonochem 2006; 13(5): 455-62.
[http://dx.doi.org/10.1016/j.ultsonch.2005.08.003] [PMID: 16289805]
[118]
Xue J, Lu X, Du Y, Mao W, Wang Y, Li J. Ultrasonic-assisted oxidation leaching of nickel sulfide concentrate. Chin J Chem Eng 2010; 18(6): 948-53.
[http://dx.doi.org/10.1016/S1004-9541(09)60152-X]
[119]
Çetintaş S, Bingöl D. Performance evaluation of leaching processes with and without ultrasound effect combined with reagent-assisted mechanochemical process for nickel recovery from Laterite: Process optimization and kinetic evaluation. Miner Eng 2020; 157: 106562.
[http://dx.doi.org/10.1016/j.mineng.2020.106562]
[120]
Ding W, Bao S, Zhang Y, Xiao J. Mechanism and kinetics study on ultrasound assisted leaching of gallium and zinc from corundum flue dust. Miner Eng 2022; 183: 107624.
[http://dx.doi.org/10.1016/j.mineng.2022.107624]
[121]
Davies LA, Dargue A, Dean JR, Deary ME. Use of 24 kHz ultrasound to improve sulfate precipitation from wastewater. Ultrason Sonochem 2015; 23: 424-31.
[http://dx.doi.org/10.1016/j.ultsonch.2014.08.017] [PMID: 25218769]
[122]
Zhao C, Zhang Y, Cao H, et al. Lithium carbonate recovery from lithium-containing solution by ultrasound assisted precipitation. Ultrason Sonochem 2019; 52: 484-92.
[http://dx.doi.org/10.1016/j.ultsonch.2018.12.025] [PMID: 30595487]
[123]
Dodds J, Espitalier F, Louisnard O, et al. The effect of ultrasound on crystallisation‐precipitation processes: Some examples and a new segregation model. Part Part Syst Charact 2007; 24(1): 18-28.
[http://dx.doi.org/10.1002/ppsc.200601046]
[124]
Mohod AV, Gogate PR. Improved crystallization of ammonium sulphate using ultrasound assisted approach with comparison with the conventional approach. Ultrason Sonochem 2018; 41: 310-8.
[http://dx.doi.org/10.1016/j.ultsonch.2017.09.047] [PMID: 29137757]
[125]
Nalesso S, Bussemaker MJ, Sear RP, Hodnett M, Lee J. A review on possible mechanisms of sonocrystallisation in solution. Ultrason Sonochem 2019; 57: 125-38.
[http://dx.doi.org/10.1016/j.ultsonch.2019.04.020] [PMID: 31208608]
[126]
Zhang X, Yuan J, Tian J, et al. Ultrasonic-enhanced selective sulfide precipitation of copper ions from copper smelting dust using monoclinic pyrrhotite. Trans Nonferrous Met Soc China 2022; 32(2): 682-95.
[http://dx.doi.org/10.1016/S1003-6326(22)65825-4]
[127]
Pesic B, Zhou T. Application of ultrasound in extractive metallurgy: Sonochemical extraction of nickel. Metall Trans, B, Process Metall 1992; 23(1): 13-22.
[http://dx.doi.org/10.1007/BF02654031]
[128]
Daryabor M, Ahmadi A, Zilouei H. Solvent extraction of cadmium and zinc from sulphate solutions: Comparison of mechanical agitation and ultrasonic irradiation. Ultrason Sonochem 2017; 34: 931-7.
[http://dx.doi.org/10.1016/j.ultsonch.2016.07.014] [PMID: 27773323]
[129]
Ran J, Li Y, Wang X, et al. Metal recovery from industrial solid waste by ultrasonic-assisted hydrometallurgical leaching: A review. Environ Chem Lett 2024; 22(4): 2055-90.
[http://dx.doi.org/10.1007/s10311-024-01743-1]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy