Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Machine Learning Meets Physics-based Modeling: A Mass-spring System to Predict Protein-ligand Binding Affinity

Author(s): Walter Filgueira de Azevedo*

Volume 32, Issue 28, 2025

Published on: 01 August, 2024

Page: [5882 - 5897] Pages: 16

DOI: 10.2174/0109298673307315240730042209

Price: $65

Abstract

Background: Computational assessment of the energetics of protein-ligand complexes is a challenge in the early stages of drug discovery. Previous comparative studies on computational methods to calculate the binding affinity showed that targeted scoring functions outperform universal models.

Objective: The goal here is to review the application of a simple physics-based model to estimate the binding. The focus is on a mass-spring system developed to predict binding affinity against cyclin-dependent kinase.

Method: Publications in PubMed were searched to find mass-spring models to predict binding affinity. Crystal structures of cyclin-dependent kinases found in the protein data bank and two web servers to calculate affinity based on the atomic coordinates were employed.

Results: One recent study showed how a simple physics-based scoring function (named Taba) could contribute to the analysis of protein-ligand interactions. Taba methodology outperforms robust physics-based models implemented in docking programs such as AutoDock4 and Molegro Virtual Docker. Predictive metrics of 27 scoring functions and energy terms highlight the superior performance of the Taba scoring function for cyclin- dependent kinase.

Conclusion: The recent progress of machine learning methods and the availability of these techniques through free libraries boosted the development of more accurate models to address protein-ligand interactions. Combining a naïve mass-spring system with machine-learning techniques generated a targeted scoring function with superior predictive performance to estimate pKi.

Keywords: Physics-based model, mass-spring system, artificial intelligence, deep learning, machine learning, CDK.

[1]
Zhao, L.; Zhu, Y.; Wang, J.; Wen, N.; Wang, C.; Cheng, L. A brief review of protein–ligand interaction prediction. Comput. Struct. Biotechnol. J., 2022, 20, 2831-2838.
[http://dx.doi.org/10.1016/j.csbj.2022.06.004] [PMID: 35765652]
[2]
Zhao, J.; Cao, Y.; Zhang, L. Exploring the computational methods for protein-ligand binding site prediction. Comput. Struct. Biotechnol. J., 2020, 18, 417-426.
[http://dx.doi.org/10.1016/j.csbj.2020.02.008] [PMID: 32140203]
[3]
Böhm, H.J. A novel computational tool for automated structure-based drug design. J. Mol. Recognit., 1993, 6(3), 131-137.
[http://dx.doi.org/10.1002/jmr.300060305] [PMID: 8060670]
[4]
Mena-Ulecia, K.; Tiznado, W.; Caballero, J. Study of the differential activity of thrombin inhibitors using docking, QSAR, molecular dynamics, and MM-GBSA. PLoS One, 2015, 10(11), e0142774.
[http://dx.doi.org/10.1371/journal.pone.0142774] [PMID: 26599107]
[5]
Gohlke, H.; Hendlich, M.; Klebe, G. Knowledge-based scoring function to predict protein-ligand interactions. J. Mol. Biol., 2000, 295(2), 337-356.
[http://dx.doi.org/10.1006/jmbi.1999.3371] [PMID: 10623530]
[6]
Sha, C.M.; Wang, J.; Dokholyan, N.V. NeuralDock: Rapid and conformation-agnostic docking of small molecules. Front. Mol. Biosci., 2022, 9, 867241.
[http://dx.doi.org/10.3389/fmolb.2022.867241] [PMID: 35392534]
[7]
Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model., 2021, 61(8), 3891-3898.
[http://dx.doi.org/10.1021/acs.jcim.1c00203] [PMID: 34278794]
[8]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and autodocktools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[9]
Thomsen, R.; Christensen, M.H. MolDock: A new technique for high-accuracy molecular docking. J. Med. Chem., 2006, 49(11), 3315-3321.
[http://dx.doi.org/10.1021/jm051197e] [PMID: 16722650]
[10]
Bitencourt-Ferreira, G.; de Azevedo, W.F., Jr Molegro virtual docker for docking. Methods Mol. Biol., 2019, 2053, 149-167.
[http://dx.doi.org/10.1007/978-1-4939-9752-7_10] [PMID: 31452104]
[11]
Vazquez-Rodriguez, S.; Ramírez-Contreras, D.; Noriega, L.; García-García, A.; Sánchez-Gaytán, B.L.; Melendez, F.J.; Castro, M.E.; de Azevedo, W.F., Jr; González-Vergara, E. Interaction of copper potential metallodrugs with TMPRSS2: A comparative study of docking tools and its implications on COVID-19. Front Chem., 2023, 11, 1128859.
[http://dx.doi.org/10.3389/fchem.2023.1128859] [PMID: 36778030]
[12]
Spyrakis, F.; Amadasi, A.; Fornabaio, M.; Abraham, D.J.; Mozzarelli, A.; Kellogg, G.E.; Cozzini, P. The consequences of scoring docked ligand conformations using free energy correlations. Eur. J. Med. Chem., 2007, 42(7), 921-933.
[http://dx.doi.org/10.1016/j.ejmech.2006.12.037] [PMID: 17346861]
[13]
Boyles, F.; Deane, C.M.; Morris, G.M. Learning from the ligand: Using ligand-based features to improve binding affinity prediction. Bioinformatics, 2020, 36(3), 758-764.
[http://dx.doi.org/10.1093/bioinformatics/btz665] [PMID: 31598630]
[14]
Wójcikowski, M.; Siedlecki, P.; Ballester, P.J. Building machine-learning scoring functions for structure-based prediction of intermolecular binding affinity. Methods Mol. Biol., 2019, 2053, 1-12.
[http://dx.doi.org/10.1007/978-1-4939-9752-7_1] [PMID: 31452095]
[15]
Bitencourt-Ferreira, G.; Veit-Acosta, M.; de Azevedo, W.F., Jr Electrostatic energy in protein–ligand complexes. Methods Mol. Biol., 2019, 2053, 67-77.
[http://dx.doi.org/10.1007/978-1-4939-9752-7_5] [PMID: 31452099]
[16]
Bitencourt-Ferreira, G.; de Azevedo Junior, W.F. Electrostatic potential energy in protein-drug complexes. Curr. Med. Chem., 2021, 28(24), 4954-4971.
[http://dx.doi.org/10.2174/1875533XMTEzhODQlw] [PMID: 33593246]
[17]
Bitencourt-Ferreira, G.; Veit-Acosta, M.; de Azevedo, W.F., Jr Van der waals potential in protein complexes. Methods Mol. Biol., 2019, 2053, 79-91.
[http://dx.doi.org/10.1007/978-1-4939-9752-7_6] [PMID: 31452100]
[18]
Bitencourt-Ferreira, G.; Veit-Acosta, M.; de Azevedo, W.F., Jr Hydrogen bonds in protein-ligand complexes. Methods Mol. Biol., 2019, 2053, 93-107.
[http://dx.doi.org/10.1007/978-1-4939-9752-7_7] [PMID: 31452101]
[19]
Shin, W.H.; Heo, L.; Lee, J.; Ko, J.; Seok, C.; Lee, J. LigDockCSA: Protein–ligand docking using conformational space annealing. J. Comput. Chem., 2011, 32(15), 3226-3232.
[http://dx.doi.org/10.1002/jcc.21905] [PMID: 21837636]
[20]
Forli, S.; Olson, A.J. A force field with discrete displaceable waters and desolvation entropy for hydrated ligand docking. J. Med. Chem., 2012, 55(2), 623-638.
[http://dx.doi.org/10.1021/jm2005145] [PMID: 22148468]
[21]
Breda, A.; Basso, L.; Santos, D.; de Azevedo, W., Jr Virtual screening of drugs: Score functions, docking, and drug design. Curr. Computeraided Drug Des., 2008, 4(4), 265-272.
[http://dx.doi.org/10.2174/157340908786786047]
[22]
Santos, L.H.S.; Ferreira, R.S.; Caffarena, E.R. Integrating molecular docking and molecular dynamics simulations. Methods Mol. Biol., 2019, 2053, 13-34.
[http://dx.doi.org/10.1007/978-1-4939-9752-7_2] [PMID: 31452096]
[23]
Ross, G.A.; Morris, G.M.; Biggin, P.C. One size does not fit all: The limits of structure-based models in drug discovery. J. Chem. Theory Comput., 2013, 9(9), 4266-4274.
[http://dx.doi.org/10.1021/ct4004228] [PMID: 24124403]
[24]
Li, J.; Fu, A.; Zhang, L. An overview of scoring functions used for protein–ligand interactions in molecular docking. Interdiscip. Sci., 2019, 11(2), 320-328.
[http://dx.doi.org/10.1007/s12539-019-00327-w] [PMID: 30877639]
[25]
da Silva, A.D.; Bitencourt-Ferreira, G.; de Azevedo, W.F., Jr Taba: A tool to analyze the binding affinity. J. Comput. Chem., 2020, 41(1), 69-73.
[http://dx.doi.org/10.1002/jcc.26048] [PMID: 31410856]
[26]
Goel, G.; Chou, I.C.; Voit, E.O. Biological systems modeling and analysis: A biomolecular technique of the twenty-first century. J. Biomol. Tech., 2006, 17(4), 252-269.
[PMID: 17028166]
[27]
Kitano, H. Computational systems biology. Nature, 2002, 420(6912), 206-210.
[http://dx.doi.org/10.1038/nature01254] [PMID: 12432404]
[28]
Markowetz, F. All biology is computational biology. PLoS Biol., 2017, 15(3), e2002050.
[http://dx.doi.org/10.1371/journal.pbio.2002050] [PMID: 28278152]
[29]
Westerhoff, H.V.; Palsson, B.O. The evolution of molecular biology into systems biology. Nat. Biotechnol., 2004, 22(10), 1249-1252.
[http://dx.doi.org/10.1038/nbt1020] [PMID: 15470464]
[30]
Bitencourt-Ferreira, G.; Villarreal, M.A.; Quiroga, R.; Biziukova, N.; Poroikov, V.; Tarasova, O.; de Azevedo Junior, W.F. Exploring scoring function space: Developing computational models for drug discovery. Curr. Med. Chem., 2024, 31(17), 2361-2377.
[http://dx.doi.org/10.2174/0929867330666230321103731] [PMID: 36944627]
[31]
Bitencourt-Ferreira, G.; de Azevedo, W.F., Jr Molecular dynamics simulations with NAMD2. Methods Mol. Biol., 2019, 2053, 109-124.
[http://dx.doi.org/10.1007/978-1-4939-9752-7_8] [PMID: 31452102]
[32]
de Azevedo, W.F., Jr Molecular dynamics simulations of protein targets identified in Mycobacterium tuberculosis. Curr. Med. Chem., 2011, 18(9), 1353-1366.
[http://dx.doi.org/10.2174/092986711795029519] [PMID: 21366529]
[33]
Sulimov, V.B.; Kutov, D.C.; Sulimov, A.V. Advances in docking. Curr. Med. Chem., 2020, 26(42), 7555-7580.
[http://dx.doi.org/10.2174/0929867325666180904115000] [PMID: 30182836]
[34]
Veit-Acosta, M.; de Azevedo Junior, W.F. The impact of crystallographic data for the development of machine learning models to predict protein-ligand binding affinity. Curr. Med. Chem., 2021, 28(34), 7006-7022.
[http://dx.doi.org/10.2174/0929867328666210210121320] [PMID: 33568025]
[35]
Quiroga, R.; Villarreal, M.A. Vinardo: A scoring function based on autodock vina improves scoring, docking, and virtual screening. PLoS One, 2016, 11(5), e0155183.
[http://dx.doi.org/10.1371/journal.pone.0155183] [PMID: 27171006]
[36]
Bohacek, R.S.; McMartin, C.; Guida, W.C. The art and practice of structure-based drug design: A molecular modeling perspective. Med. Res. Rev., 1996, 16(1), 3-50.
[http://dx.doi.org/10.1002/(SICI)1098-1128(199601)16:1<3::AID-MED1>3.0.CO;2-6] [PMID: 8788213]
[37]
Maynard Smith, J. Natural selection and the concept of a protein space. Nature, 1970, 225(5232), 563-564.
[http://dx.doi.org/10.1038/225563a0] [PMID: 5411867]
[38]
Guzenko, D.; Burley, S.K.; Duarte, J.M. Real time structural search of the protein data bank. PLOS Comput. Biol., 2020, 16(7), e1007970.
[http://dx.doi.org/10.1371/journal.pcbi.1007970] [PMID: 32639954]
[39]
Gilson, M.K.; Liu, T.; Baitaluk, M.; Nicola, G.; Hwang, L.; Chong, J. BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res., 2016, 44(D1), D1045-D1053.
[http://dx.doi.org/10.1093/nar/gkv1072] [PMID: 26481362]
[40]
Wagle, S.; Smith, R.D.; Dominic, A.J., III; DasGupta, D.; Tripathi, S.K.; Carlson, H.A. Sunsetting binding MOAD with its last data update and the addition of 3D-ligand polypharmacology tools. Sci. Rep., 2023, 13(1), 3008.
[http://dx.doi.org/10.1038/s41598-023-29996-w] [PMID: 36810894]
[41]
Liu, Z.; Li, Y.; Han, L.; Li, J.; Liu, J.; Zhao, Z.; Nie, W.; Liu, Y.; Wang, R. PDB-wide collection of binding data: current status of the PDBbind database. Bioinformatics, 2015, 31(3), 405-412.
[http://dx.doi.org/10.1093/bioinformatics/btu626]
[42]
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; Verplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.; Perrot, M.; Duchesnay, E. Scikitlearn: Machine learning in python. J. Mach. Learn. Res., 2011, 12, 2825-2830.
[43]
de Azevedo, W.F. Application of machine learning techniques for drug discovery. Curr. Med. Chem., 2021, 28(38), 7805-7807.
[http://dx.doi.org/10.2174/092986732838211207154549] [PMID: 34911417]
[44]
Bitencourt-Ferreira, G.; de Azevedo, W.F., Jr Exploring the scoring function space. Methods Mol. Biol., 2019, 2053, 275-281.
[http://dx.doi.org/10.1007/978-1-4939-9752-7_17] [PMID: 31452111]
[45]
Veit-Acosta, M.; de Azevedo Junior, W.F. Computational prediction of binding affinity for CDK2-ligand complexes. A protein target for cancer drug discovery. Curr. Med. Chem., 2022, 29(14), 2438-2455.
[http://dx.doi.org/10.2174/0929867328666210806105810] [PMID: 34365938]
[46]
Veríssimo, G.C.; Serafim, M.S.M.; Kronenberger, T.; Ferreira, R.S.; Honorio, K.M.; Maltarollo, V.G. Designing drugs when there is low data availability: One-shot learning and other approaches to face the issues of a long-term concern. Expert Opin. Drug Discov., 2022, 17(9), 929-947.
[http://dx.doi.org/10.1080/17460441.2022.2114451] [PMID: 35983695]
[47]
Murray, A.W. Cyclin-dependent kinases: Regulators of the cell cycle and more. Chem. Biol., 1994, 1(4), 191-195.
[http://dx.doi.org/10.1016/1074-5521(94)90009-4] [PMID: 9383389]
[48]
Morgan, D.O. Principles of CDK regulation. Nature, 1995, 374(6518), 131-134.
[http://dx.doi.org/10.1038/374131a0] [PMID: 7877684]
[49]
Malumbres, M. Cyclin-dependent kinases. Genome Biol., 2014, 15(6), 122.
[http://dx.doi.org/10.1186/gb4184] [PMID: 25180339]
[50]
Bártek, J.; Stašková, Z.; Draetta, G.; Lukáš, J. Molecular pathology of the cell cycle in human cancer cells. Stem Cells, 1993, 11(Suppl. 1), 51-58.
[http://dx.doi.org/10.1002/stem.5530110611] [PMID: 8318919]
[51]
De Bondt, H.L.; Rosenblatt, J.; Jancarik, J.; Jones, H.D.; Morgan, D.O.; Kim, S.H. Crystal structure of cyclin-dependent kinase 2. Nature, 1993, 363(6430), 595-602.
[http://dx.doi.org/10.1038/363595a0] [PMID: 8510751]
[52]
Schulze-Gahmen, U.; De Bondt, H.L.; Kim, S.H. High-resolution crystal structures of human cyclin-dependent kinase 2 with and without ATP: Bound waters and natural ligand as guides for inhibitor design. J. Med. Chem., 1996, 39(23), 4540-4546.
[http://dx.doi.org/10.1021/jm960402a] [PMID: 8917641]
[53]
Xavier, M.M.; Heck, G.S.; Avila, M.B.; Levin, N.M.B.; Pintro, V.O.; Carvalho, N.L.; Azevedo, W.F., Jr SAnDReS a computational tool for statistical analysis of docking results and development of scoring functions. Comb. Chem. High Throughput Screen., 2016, 19(10), 801-812.
[PMID: 27686428]
[54]
Schulze-Gahmen, U.; Brandsen, J.; Jones, H.D.; Morgan, D.O.; Meijer, L.; Vesely, J.; Kim, S.H. Multiple modes of ligand recognition: Crystal structures of cyclin-dependent protein kinase 2 in complex with ATP and two inhibitors, olomoucine and isopentenyladenine. Proteins, 1995, 22(4), 378-391.
[http://dx.doi.org/10.1002/prot.340220408] [PMID: 7479711]
[55]
Wood, D.J.; Korolchuk, S.; Tatum, N.J.; Wang, L.Z.; Endicott, J.A.; Noble, M.E.M.; Martin, M.P. Differences in the conformational energy landscape of CDK1 and CDK2 suggest a mechanism for achieving selective CDK inhibition. Cell Chem. Biol., 2019, 26(1), 121-130.e5.
[http://dx.doi.org/10.1016/j.chembiol.2018.10.015] [PMID: 30472117]
[56]
Martin, M.P.; Alam, R.; Betzi, S.; Ingles, D.J.; Zhu, J.Y.; Schönbrunn, E. A novel approach to the discovery of small-molecule ligands of CDK2. ChemBioChem, 2012, 13(14), 2128-2136.
[http://dx.doi.org/10.1002/cbic.201200316] [PMID: 22893598]
[57]
Kryštof, V.; Cankař, P.; Fryšová, I.; Slouka, J.; Kontopidis, G.; Džubák, P.; Hajdúch, M.; Srovnal, J.; de Azevedo, W.F., Jr; Orság, M.; Paprskářová, M.; Rolčík, J.; Látr, A.; Fischer, P.M.; Strnad, M. 4-arylazo-3,5-diamino-1H-pyrazole CDK inhibitors: SAR study, crystal structure in complex with CDK2, selectivity, and cellular effects. J. Med. Chem., 2006, 49(22), 6500-6509.
[http://dx.doi.org/10.1021/jm0605740] [PMID: 17064068]
[58]
De Azevedo, W.F.; Leclerc, S.; Meijer, L.; Havlicek, L.; Strnad, M.; Kim, S.H. Inhibition of cyclin-dependent kinases by purine analogues: Crystal structure of human cdk2 complexed with roscovitine. Eur. J. Biochem., 1997, 243(1-2), 518-526.
[http://dx.doi.org/10.1111/j.1432-1033.1997.0518a.x] [PMID: 9030780]
[59]
Shen, J.; Zhang, H. Function and structure of bradykinin receptor 2 for drug discovery. Acta Pharmacol. Sin., 2023, 44(3), 489-498.
[http://dx.doi.org/10.1038/s41401-022-00982-8] [PMID: 36075965]
[60]
Klupt, K.A.; Jia, Z. eEF2K inhibitor design: The progression of exemplary structure-based drug design. Molecules, 2023, 28(3), 1095.
[http://dx.doi.org/10.3390/molecules28031095] [PMID: 36770760]
[61]
Dorahy, G.; Chen, J.Z.; Balle, T. Computer-aided drug design towards new psychotropic and neurological drugs. Molecules, 2023, 28(3), 1324.
[http://dx.doi.org/10.3390/molecules28031324] [PMID: 36770990]
[62]
Gago, F. Computational approaches to enzyme inhibition by marine natural products in the search for new drugs. Mar. Drugs, 2023, 21(2), 100.
[http://dx.doi.org/10.3390/md21020100] [PMID: 36827141]
[63]
Isert, C.; Atz, K.; Schneider, G. Structure-based drug design with geometric deep learning. Curr. Opin. Struct. Biol., 2023, 79, 102548.
[http://dx.doi.org/10.1016/j.sbi.2023.102548] [PMID: 36842415]
[64]
Zhu, K.F.; Yuan, C.; Du, Y.M.; Sun, K.L.; Zhang, X.K.; Vogel, H.; Jia, X.D.; Gao, Y.Z.; Zhang, Q.F.; Wang, D.P.; Zhang, H.W. Applications and prospects of cryo-EM in drug discovery. Mil. Med. Res., 2023, 10(1), 10.
[http://dx.doi.org/10.1186/s40779-023-00446-y] [PMID: 36872349]
[65]
Pavan, M.; Moro, S. Lessons learnt from COVID-19: Computational strategies for facing present and future pandemics. Int. J. Mol. Sci., 2023, 24(5), 4401.
[http://dx.doi.org/10.3390/ijms24054401] [PMID: 36901832]
[66]
Zuo, K.; Kranjc, A.; Capelli, R.; Rossetti, G.; Nechushtai, R.; Carloni, P. Metadynamics simulations of ligands binding to protein surfaces: A novel tool for rational drug design. Phys. Chem. Chem. Phys., 2023, 25(20), 13819-13824.
[http://dx.doi.org/10.1039/D3CP01388J] [PMID: 37184538]
[67]
Pang, X.; Xu, W.; Liu, Y.; Li, H.; Chen, L. The research progress of SARS-CoV-2 main protease inhibitors from 2020 to 2022. Eur. J. Med. Chem., 2023, 257, 115491.
[http://dx.doi.org/10.1016/j.ejmech.2023.115491] [PMID: 37244162]
[68]
Pliushcheuskaya, P.; Künze, G. Recent advances in computer-aided structure-based drug design on ion channels. Int. J. Mol. Sci., 2023, 24(11), 9226.
[http://dx.doi.org/10.3390/ijms24119226] [PMID: 37298178]
[69]
Mateev, E.; Georgieva, M.; Mateeva, A.; Zlatkov, A.; Ahmad, S.; Raza, K.; Azevedo, V.; Barh, D. Structure-based design of novel MAO-B inhibitors: A review. Molecules, 2023, 28(12), 4814.
[http://dx.doi.org/10.3390/molecules28124814] [PMID: 37375370]
[70]
Han, R.; Yoon, H.; Kim, G.; Lee, H.; Lee, Y. Revolutionizing medicinal chemistry: The application of artificial intelligence (AI) in early drug discovery. Pharmaceuticals, 2023, 16(9), 1259.
[http://dx.doi.org/10.3390/ph16091259] [PMID: 37765069]
[71]
da Silva Calixto, P.; de Almeida, R.N.; Stiebbe Salvadori, M.G.S.; dos Santos Maia, M.; Filho, J.M.B.; Scotti, M.T.; Scotti, L. In silico study examining new phenylpropanoids targets with antidepressant activity. Curr. Drug Targets, 2021, 22(5), 539-554.
[http://dx.doi.org/10.2174/1389450121666200902171838] [PMID: 32881667]
[72]
Minibaeva, G.; Ivanova, A.; Polishchuk, P. EasyDock: Customizable and scalable docking tool. J. Cheminform., 2023, 15(1), 102.
[http://dx.doi.org/10.1186/s13321-023-00772-2] [PMID: 37915072]
[73]
Zeyaullah, M.; Khan, N.; Muzammil, K.; AlShahrani, A.M.; Khan, M.S.; Alam, M.S.; Ahmad, R.; Khan, W.H. In-silico approaches for identification of compounds inhibiting SARS-CoV-2 3CL protease. PLoS One, 2023, 18(4), e0284301.
[http://dx.doi.org/10.1371/journal.pone.0284301] [PMID: 37058496]
[74]
Ghosh, S.; Cho, S.J. Three-dimensional-QSAR and relative binding affinity estimation of focal adhesion kinase inhibitors. Molecules, 2023, 28(3), 1464.
[http://dx.doi.org/10.3390/molecules28031464] [PMID: 36771129]
[75]
Ngo, S.T.; Nguyen, T.H.; Tung, N.T.; Vu, V.V.; Pham, M.Q.; Mai, B.K. Characterizing the ligand-binding affinity toward SARS-CoV-2 Mpro via physics- and knowledge-based approaches. Phys. Chem. Chem. Phys., 2022, 24(48), 29266-29278.
[http://dx.doi.org/10.1039/D2CP04476E] [PMID: 36449268]
[76]
Nguyen, T.H.; Tam, N.M.; Tuan, M.V.; Zhan, P.; Vu, V.V.; Quang, D.T.; Ngo, S.T. Searching for potential inhibitors of SARS-COV-2 main protease using supervised learning and perturbation calculations. Chem. Phys., 2023, 564, 111709.
[http://dx.doi.org/10.1016/j.chemphys.2022.111709] [PMID: 36188488]
[77]
Krasoulis, A.; Antonopoulos, N.; Pitsikalis, V.; Theodorakis, S. DENVIS: Scalable and high-throughput virtual screening using graph neural networks with atomic and surface protein pocket features. J. Chem. Inf. Model., 2022, 62(19), 4642-4659.
[http://dx.doi.org/10.1021/acs.jcim.2c01057] [PMID: 36154119]
[78]
Reis, P.B.P.S.; Bertolini, M.; Montanari, F.; Rocchia, W.; Machuqueiro, M.; Clevert, D.A. A fast and interpretable deep learning approach for accurate electrostatics-driven p Ka predictions in proteins. J. Chem. Theory Comput., 2022, 18(8), 5068-5078.
[http://dx.doi.org/10.1021/acs.jctc.2c00308] [PMID: 35837736]
[79]
Cleves, A.E.; Johnson, S.R.; Jain, A.N. Synergy and complementarity between focused machine learning and physics-based simulation in affinity prediction. J. Chem. Inf. Model., 2021, 61(12), 5948-5966.
[http://dx.doi.org/10.1021/acs.jcim.1c01382] [PMID: 34890185]
[80]
Yang, Y.; Yao, K.; Repasky, M.P.; Leswing, K.; Abel, R.; Shoichet, B.K.; Jerome, S.V. Efficient exploration of chemical space with docking and deep learning. J. Chem. Theory Comput., 2021, 17(11), 7106-7119.
[http://dx.doi.org/10.1021/acs.jctc.1c00810] [PMID: 34592101]
[81]
Alrasheed, S. Principles of Mechanics. Fundamental University Physics. Advances in Science, Technology & Innovation; Springer International Publishing: Berlin, 2019.
[http://dx.doi.org/10.1007/978-3-030-15195-9]
[82]
Mayo, S.L.; Olafson, B.D.; Goddard, W.A. DREIDING: A generic force field for molecular simulations. J. Phys. Chem., 1990, 94(26), 8897-8909.
[http://dx.doi.org/10.1021/j100389a010]
[83]
Karimipour, A.; Amini, A.; Nouri, M.; D’Orazio, A.; Sabetvand, R.; Hekmatifar, M.; Marjani, A.; Bach, Q. Molecular dynamics performance for coronavirus simulation by C, N, O, and S atoms implementation dreiding force field: Drug delivery atomic interaction in contact with metallic Fe, Al, and steel. Comput. Part. Mech., 2021, 8(4), 737-749.
[http://dx.doi.org/10.1007/s40571-020-00367-w] [PMID: 33224712]
[84]
Lima, K.A.L.; Ribeiro Júnior, L.A. Formation and stability of nanoscrolls composed of graphene and hexagonal boron nitride nanoribbons: Insights from molecular dynamics simulations. J. Mol. Model., 2023, 29(11), 339.
[http://dx.doi.org/10.1007/s00894-023-05702-5] [PMID: 37837452]
[85]
Hacisuleyman, A.; Erman, B. Fine tuning rigid body docking results using the dreiding force field: A computational study of 36 known nanobody-protein complexes. Proteins, 2023, 91(10), 1417-1426.
[http://dx.doi.org/10.1002/prot.26529] [PMID: 37232507]
[86]
Gu, Y.; Liu, M.; Staker, B.L.; Buchko, G.W.; Quinn, R.J. Drug-repurposing screening identifies a gallic acid binding site on SARS-CoV-2 non-structural protein 7. ACS Pharmacol. Transl. Sci., 2023, 6(4), 578-586.
[http://dx.doi.org/10.1021/acsptsci.2c00225] [PMID: 37082753]
[87]
Bitencourt-Ferreira, G.; de Azevedo, W.F., Jr Machine learning to predict binding affinity. Methods Mol. Biol., 2019, 2053, 251-273.
[http://dx.doi.org/10.1007/978-1-4939-9752-7_16] [PMID: 31452110]
[88]
Diakou, I.; Papakonstantinou, E.; Papageorgiou, L.; Pierouli, K.; Dragoumani, K.; Spandidos, D.; Bacopoulou, F.; Chrousos, G.; Eliopoulos, E.; Vlachakis, D. Novel computational pipelines in antiviral structure-based drug design. Biomed. Rep., 2022, 17(6), 97.
[http://dx.doi.org/10.3892/br.2022.1580] [PMID: 36382260]
[89]
Meli, R.; Morris, G.M.; Biggin, P.C. Scoring functions for protein-ligand binding affinity prediction using structure-based deep learning: A review. Frontiers in Bioinformatics, 2022, 2, 885983.
[http://dx.doi.org/10.3389/fbinf.2022.885983] [PMID: 36187180]
[90]
Deane, C.; Mokaya, M. A virtual drug-screening approach to conquer huge chemical libraries. Nature, 2022, 601(7893), 322-323.
[http://dx.doi.org/10.1038/d41586-021-03682-1] [PMID: 34912059]
[91]
Jiménez, J.; Škalič, M.; Martínez-Rosell, G.; De Fabritiis, G. KDEEP : Protein–ligand absolute binding affinity prediction via 3D-convolutional neural networks. J. Chem. Inf. Model., 2018, 58(2), 287-296.
[http://dx.doi.org/10.1021/acs.jcim.7b00650] [PMID: 29309725]
[92]
Pires, D.E.V.; Ascher, D.B. CSM-lig: A web server for assessing and comparing protein–small molecule affinities. Nucleic Acids Res., 2016, 44(W1), W557-W561.
[http://dx.doi.org/10.1093/nar/gkw390] [PMID: 27151202]
[93]
Walsh, I.; Fishman, D.; Garcia-Gasulla, D.; Titma, T.; Pollastri, G.; Capriotti, E.; Casadio, R.; Capella-Gutierrez, S.; Cirillo, D.; Del Conte, A.; Dimopoulos, A.C.; Del Angel, V.D.; Dopazo, J.; Fariselli, P.; Fernández, J.M.; Huber, F.; Kreshuk, A.; Lenaerts, T.; Martelli, P.L.; Navarro, A.; Broin, P.Ó.; Piñero, J.; Piovesan, D.; Reczko, M.; Ronzano, F.; Satagopam, V.; Savojardo, C.; Spiwok, V.; Tangaro, M.A.; Tartari, G.; Salgado, D.; Valencia, A.; Zambelli, F.; Harrow, J.; Psomopoulos, F.E.; Tosatto, S.C.E. ELIXIR machine learning focus group. DOME: Recommendations for supervised machine learning validation in biology. Nat. Methods, 2021, 18(10), 1122-1127.
[http://dx.doi.org/10.1038/s41592-021-01205-4] [PMID: 34316068]
[94]
Bitencourt-Ferreira, G.; Rizzotto, C.; de Azevedo Junior, W.F. Machine learning-based scoring functions, development and applications with SAnDReS. Curr. Med. Chem., 2021, 28(9), 1746-1756.
[http://dx.doi.org/10.2174/1875533XMTA25NjQu4] [PMID: 32410551]
[95]
Bitencourt-Ferreira, G.; de Azevedo, W.F., Jr SAnDReS: A computational tool for docking. Methods Mol. Biol., 2019, 2053, 51-65.
[http://dx.doi.org/10.1007/978-1-4939-9752-7_4] [PMID: 31452098]
[96]
Bitencourt-Ferreira, G.; de Azevedo, W.F. Development of a machine-learning model to predict gibbs free energy of binding for protein-ligand complexes. Biophys. Chem., 2018, 240, 63-69.
[http://dx.doi.org/10.1016/j.bpc.2018.05.010] [PMID: 29906639]
[97]
Gramatica, P. On the development and validation of QSAR models. Methods Mol. Biol., 2013, 930, 499-526.
[http://dx.doi.org/10.1007/978-1-62703-059-5_21] [PMID: 23086855]
[98]
Filgueira de Azevedo, W., Jr; Canduri, F.; Freitas da Silveira, N.J. Structural basis for inhibition of cyclin-dependent kinase 9 by flavopiridol. Biochem. Biophys. Res. Commun., 2002, 293(1), 566-571.
[http://dx.doi.org/10.1016/S0006-291X(02)00266-8] [PMID: 12054639]
[99]
Barakat, A.; Alshahrani, S.; Al-Majid, A.M.; Alamary, A.S.; Haukka, M.; Abu-Serie, M.M.; Domingo, L.R.; Ashraf, S.; Ul-Haq, Z.; Nafie, M.S.; Teleb, M. New spiro-indeno[1,2- b ]quinoxalines clubbed with benzimidazole scaffold as CDK2 inhibitors for halting non-small cell lung cancer; stereoselective synthesis, molecular dynamics and structural insights. J. Enzyme Inhib. Med. Chem., 2023, 38(1), 2281260.
[http://dx.doi.org/10.1080/14756366.2023.2281260] [PMID: 37994663]
[100]
Al-Qadhi, M.A.; Allam, H.A.; Fahim, S.H.; Yahya, T.A.A.; Ragab, F.A.F. Design and synthesis of certain 7-Aryl-2-Methyl-3-Substituted Pyrazolo1,5-aPyrimidines as multikinase inhibitors. Eur. J. Med. Chem., 2023, 262, 115918.
[http://dx.doi.org/10.1016/j.ejmech.2023.115918] [PMID: 37922829]
[101]
Salem, M.E.; Mahrous, E.M.; Ragab, E.A.; Nafie, M.S.; Dawood, K.M. Synthesis and anti-breast cancer potency of mono- and bis-(pyrazolyl[1,2,4]triazolo[3,4- b ][1,3,4]thiadiazine) derivatives as EGFR/CDK-2 target inhibitors. ACS Omega, 2023, 8(38), 35359-35369.
[http://dx.doi.org/10.1021/acsomega.3c05309] [PMID: 37779952]
[102]
Zeng, M.; Grandner, J.M.; Bryan, M.C.; Verma, V.; Larouche-Gauthier, R.; Leclerc, J.P.; Zhao, L.; Haghshenas, P.; Aubert-Nicol, S.; Yadav, A.; Ashley, M.; Chen, J.Z.; Durk, M.; Samy, K.E.; Nespi, M.; Levy, E.; Merrick, K.; Moffat, J.G.; Murray, J.; Oh, A.; Orr, C.; Segal, E.; Sims, J.; Sneeringer, C.; Prangley, M.; Vartanian, S.; Magnuson, S.; Parr, B.T. Discovery of selective tertiary amide inhibitors of cyclin-dependent kinase 2 (CDK2). ACS Med. Chem. Lett., 2023, 14(9), 1179-1187.
[http://dx.doi.org/10.1021/acsmedchemlett.3c00142] [PMID: 37736184]
[103]
Eltamany, E.E.; Nafie, M.S.; Hal, D.M.; Abdel-Kader, M.S.; Abu-Elsaoud, A.M.; Ahmed, S.A.; Ibrahim, A.K.; Badr, J.M.; Abdelhameed, R.F.A. A new saponin (Zygo-albuside D) from Zygophyllum album roots triggers apoptosis in non-small cell lung carcinoma (A549 Cells) through CDK-2 inhibition. ACS Omega, 2023, 8(33), 30630-30639.
[http://dx.doi.org/10.1021/acsomega.3c04314] [PMID: 37636931]
[104]
Altharawi, A.; Alanazi, M.M.; Alossaimi, M.A.; Alanazi, A.S.; Alqahtani, S.M.; Geesi, M.H.; Riadi, Y. Novel 2-Sulfanylquinazolin-4(3H)-one derivatives as multi-kinase inhibitors and apoptosis inducers: A synthesis, biological evaluation, and molecular docking study. Molecules, 2023, 28(14), 5548.
[http://dx.doi.org/10.3390/molecules28145548] [PMID: 37513420]
[105]
De Azevedo, W.F., Jr; Mueller-Dieckmann, H.J.; Schulze-Gahmen, U.; Worland, P.J.; Sausville, E.; Kim, S.H. Structural basis for specificity and potency of a flavonoid inhibitor of human CDK2, a cell cycle kinase. Proc. Natl. Acad. Sci. USA, 1996, 93(7), 2735-2740.
[http://dx.doi.org/10.1073/pnas.93.7.2735] [PMID: 8610110]
[106]
Hernandes, M.; Cavalcanti, S.M.; Moreira, D.R.; de Azevedo Junior, W.; Leite, A.C. Halogen atoms in the modern medicinal chemistry: Hints for the drug design. Curr. Drug Targets, 2010, 11(3), 303-314.
[http://dx.doi.org/10.2174/138945010790711996] [PMID: 20210755]
[107]
Su, M.; Yang, Q.; Du, Y.; Feng, G.; Liu, Z.; Li, Y.; Wang, R. Comparative assessment of scoring functions: The CASF-2016 update. J. Chem. Inf. Model., 2019, 59(2), 895-913.
[http://dx.doi.org/10.1021/acs.jcim.8b00545] [PMID: 30481020]
[108]
Walter F, A.J. Machine learning for drug science. Exploration of Drug Science, 2023, 1(2), 77-80.
[http://dx.doi.org/10.37349/eds.2023.00007]
[109]
Canduri, F.; Silva, R.G.; dos Santos, D.M.; Palma, M.S.; Basso, L.A.; Santos, D.S.; de Azevedo, W.F., Jr Structure of human PNP complexed with ligands. Acta Crystallogr. D Biol. Crystallogr., 2005, 61(7), 856-862.
[http://dx.doi.org/10.1107/S0907444905005421] [PMID: 15983407]
[110]
Yang, C.; Chen, E.A.; Zhang, Y. Protein–ligand docking in the machine-learning Era. Molecules, 2022, 27(14), 4568.
[http://dx.doi.org/10.3390/molecules27144568] [PMID: 35889440]
[111]
Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S.A.A.; Ballard, A.J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A.W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D. Highly accurate protein structure prediction with AlphaFold. Nature, 2021, 596(7873), 583-589.
[http://dx.doi.org/10.1038/s41586-021-03819-2] [PMID: 34265844]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy