Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Neuroprotective Efficacy and Complementary Treatment with Medicinal Herbs: A Comprehensive Review of Recent Therapeutic Approaches in Epilepsy Management

Author(s): Amit Anand, Aman Shrivastava*, Kuldeep Singh, Rakesh Barik, Devshree Gayakwad, Jailani S, Shamim and Sumeet Dwivedi

Volume 24, Issue 1, 2025

Published on: 26 July, 2024

Page: [60 - 73] Pages: 14

DOI: 10.2174/0118715273332140240724093837

Price: $65

Abstract

Central Nervous System (CNS) disorders affect millions of people worldwide, with a significant proportion experiencing drug-resistant forms where conventional medications fail to provide adequate seizure control. This abstract delves into recent advancements and innovative therapies aimed at addressing the complex challenge of CNS-related drug-resistant epilepsy (DRE) management. The idea of precision medicine has opened up new avenues for epilepsy treatment. Herbs such as curcumin, ginkgo biloba, panax ginseng, bacopa monnieri, ashwagandha, and rhodiola rosea influence the BDNF pathway through various mechanisms. These include the activation of CREB, inhibition of NF-κB, modulation of neurotransmitters, reduction of oxidative stress, and anti- inflammatory effects. By promoting BDNF expression and activity, these herbs support neuroplasticity, cognitive function, and overall neuronal health. Novel antiepileptic drugs (AEDs) with distinct mechanisms of action demonstrate efficacy in refractory cases where traditional medications falter. Additionally, repurposing existing drugs for antiepileptic purposes presents a cost-effective strategy to broaden therapeutic choices. Cannabidiol (CBD), derived from cannabis herbs, has garnered attention for its anticonvulsant properties, offering a potential adjunctive therapy for refractory seizures. In conclusion, recent advances and innovative therapies represent a multifaceted approach to managing drug-resistant epilepsy. Leveraging precision medicine, neurostimulation technologies, novel pharmaceuticals, and complementary therapies, clinicians can optimize treatment outcomes and improve the life expectancy of patients living with refractory seizures. Genetic testing and biomarker identification now allow for personalized therapeutic approaches tailored to individual patient profiles. Utilizing next-generation sequencing techniques, researchers have elucidated genetic mutations.

Keywords: Epilepsy, antiepileptic drugs, drug-resistant, medicinal herbs, adjunctive therapy, traditional therapies, novel approaches, surgical resection.

Graphical Abstract
[1]
Abramovici S, Bagić A. Epidemiology of epilepsy. Handb Clin Neurol 2016; 138: 159-71.
[http://dx.doi.org/10.1016/B978-0-12-802973-2.00010-0]
[2]
Afra P, Adamolekun B, Aydemir S, Watson GDR. Evolution of the vagus nerve stimulation (VNS) therapy system technology for drug-resistant epilepsy. Front Med Technol 2021; 3: 696543.
[http://dx.doi.org/10.3389/fmedt.2021.696543] [PMID: 35047938]
[3]
Alachkar A, Łażewska D, Latacz G, et al. Studies on anticonvulsant effects of novel histamine H3R antagonists in electrically and chemically induced seizures in rats. Int J Mol Sci 2018; 19(11): 3386.
[http://dx.doi.org/10.3390/ijms19113386] [PMID: 30380674]
[4]
Allahverdiyev O, Dzhafar S, Berköz M, Yıldırım M. Advances in current medication and new therapeutic approaches in epilepsy. East J Med 2018; 23(1): 48-59.
[http://dx.doi.org/10.5505/ejm.2018.62534]
[5]
Alnamer R, Alaoui K, Bouidida EH, Benjouad A, Cherrah Y. Sedative and hypnotic activities of the methanolic and aqueous extracts of Lavandula officinalis from Morocco. Adv Pharmacol Pharm Sci 2012; 62(1): 501-54.
[PMID: 33299983]
[6]
Anand P, Othon GC, Sakadi F, et al. Epilepsy and traditional healers in the Republic of Guinea: A mixed methods study. Epilepsy Behav 2019; 92: 276-82.
[http://dx.doi.org/10.1016/j.yebeh.2019.01.017] [PMID: 30731293]
[7]
Anderson RJ, Frye MA, Abulseoud OA, et al. Deep brain stimulation for treatment-resistant depression: Efficacy, safety and mechanisms of action. Neurosci Biobehav Rev 2012; 36(8): 1920-33.
[http://dx.doi.org/10.1016/j.neubiorev.2012.06.001] [PMID: 22721950]
[8]
Annegers JF. Epidemiology and genetics of epilepsy. Neurol Clin 1994; 12(1): 15-30.
[http://dx.doi.org/10.1016/S0733-8619(18)30108-7] [PMID: 8183207]
[9]
Anuradha H, Srikumar BN, Shankaranarayana Rao BS, Lakshmana M. Euphorbia hirta reverses chronic stress-induced anxiety and mediates its action through the GABAA receptor benzodiazepine receptor-Cl-channel complex. J Neural Transm 2008; 115(1): 35-42.
[http://dx.doi.org/10.1007/s00702-007-0821-6] [PMID: 18087670]
[10]
Awad R, Levac D, Cybulska P, Merali Z, Trudeau VL, Arnason JT. Effects of traditionally used anxiolytic botanicals on enzymes of the γ-aminobutyric acid (GABA) systemThis article is one of a selection of papers published in this special issue (part 1 of 2) on the Safety and Efficacy of Natural Health Products. Can J Physiol Pharmacol 2007; 85(9): 933-42.
[http://dx.doi.org/10.1139/Y07-083] [PMID: 18066140]
[11]
Banerjee PN, Filippi D, Allen Hauser W. The descriptive epidemiology of epilepsy-A review. Epilepsy Res 2009; 85(1): 31-45.
[http://dx.doi.org/10.1016/j.eplepsyres.2009.03.003] [PMID: 19369037]
[12]
Baran S, Brown PC, Baudy AR, et al. Perspectives on the evaluation and adoption of complex in vitro models in drug development: Workshop with the FDA and the pharmaceutical industry (IQ MPS Affiliate). Altern Anim Exp 2022; 39(2): 297-314.
[http://dx.doi.org/10.14573/altex.2112203] [PMID: 35064273]
[13]
Bartsch T, Wulff P. The hippocampus in aging and disease: From plasticity to vulnerability. Neuroscience 2015; 309: 1-16.
[http://dx.doi.org/10.1016/j.neuroscience.2015.07.084] [PMID: 26241337]
[14]
Bauer S, Baier H, Baumgartner C, et al. Transcutaneous vagus nerve stimulation (tVNS) for treatment of drug-resistant epilepsy: A randomized, double-blind clinical trial (cMPsE02). Brain Stimul 2016; 9(3): 356-63.
[http://dx.doi.org/10.1016/j.brs.2015.11.003] [PMID: 27033012]
[15]
Beghi E. The epidemiology of epilepsy. Neuroepidemiology 2020; 54(2): 185-91.
[http://dx.doi.org/10.1159/000503831] [PMID: 31852003]
[16]
Benabid AL. Deep brain stimulation for Parkinson’s disease. Curr Opin Neurobiol 2003; 13(6): 696-706.
[http://dx.doi.org/10.1016/j.conb.2003.11.001] [PMID: 14662371]
[17]
Benarroch EE. GABA A receptor heterogeneity, function, and implications for epilepsy. Neurology 2007; 68(8): 612-4.
[http://dx.doi.org/10.1212/01.wnl.0000255669.83468.dd] [PMID: 17310035]
[18]
Ben-Menachem E, French JA. VNS Therapy versus the latest antiepileptic drug. Epileptic Disord 2005; 7(S1) (Suppl. 1): S22-6.
[http://dx.doi.org/10.1684/j.1950-6945.2005.tb00148.x] [PMID: 16120490]
[19]
Berényi A, Belluscio M, Mao D, Buzsáki G. Closed-loop control of epilepsy by transcranial electrical stimulation. Science 2012; 337(6095): 735-7.
[http://dx.doi.org/10.1126/science.1223154] [PMID: 22879515]
[20]
Berg AT, Testa FM, Levy SR, Shinnar S. The epidemiology of epilepsy. Past, present, and future. Neurol Clin 1996; 14(2): 383-98.
[http://dx.doi.org/10.1016/S0733-8619(05)70263-2] [PMID: 8827178]
[21]
Bergey GK, Morrell MJ, Mizrahi EM, et al. Long-term treatment with responsive brain stimulation in adults with refractory partial seizures. Neurology 2015; 84(8): 810-7.
[http://dx.doi.org/10.1212/WNL.0000000000001280] [PMID: 25616485]
[22]
Boison D. Cell and gene therapies for refractory epilepsy. Curr Neuropharmacol 2007; 5(2): 115-25.
[http://dx.doi.org/10.2174/157015907780866938] [PMID: 18615179]
[23]
Bratsos SP, Karponis D, Saleh SN. Efficacy and safety of deep brain stimulation in the treatment of Parkinson’s disease: A systematic review and meta-analysis of randomized controlled trials. Cureus 2018; 10(10): e3474.
[http://dx.doi.org/10.7759/cureus.3474] [PMID: 30648026]
[24]
Brodie MJ, Dichter MA. Established antiepileptic drugs. Seizure 1997; 6(3): 159-74.
[http://dx.doi.org/10.1016/S1059-1311(97)80001-5] [PMID: 9203243]
[25]
Brodie MJ. Tolerability and safety of commonly used antiepileptic drugs in adolescents and adults: A clinician’s overview. CNS Drugs 2017; 31(2): 135-47.
[http://dx.doi.org/10.1007/s40263-016-0406-8] [PMID: 28101765]
[26]
Browne TR, Penry JK. Benzodiazepines in the treatment of epilepsy. A review. Epilepsia 1973; 14(3): 277-310.
[http://dx.doi.org/10.1111/j.1528-1157.1973.tb03965.x] [PMID: 4204764]
[27]
Cattaneo S, Verlengia G, Marino P, Simonato M, Bettegazzi B. NPY and gene therapy for epilepsy: How, when, and Y. Front Mol Neurosci 2021; 13: 608001.
[http://dx.doi.org/10.3389/fnmol.2020.608001] [PMID: 33551745]
[28]
Chabangu Q, Maputle MS, Lebese RT. Management of epilepsy through indigenous traditional and Western approaches in Africa: A systematic review. Health SA 2022; 27: 1984.
[http://dx.doi.org/10.4102/hsag.v27i0.1984] [PMID: 36483509]
[29]
Chindo BA, Schröder H, Becker A. Methanol extract of Ficus platyphylla ameliorates seizure severity, cognitive deficit and neuronal cell loss in pentylenetetrazole-kindled mice. Phytomedicine 2015; 22(1): 86-93.
[http://dx.doi.org/10.1016/j.phymed.2014.10.005] [PMID: 25636876]
[30]
Crago PE, Mortimer JT, Peckham PH. Closed-loop control of force during electrical stimulation of muscle. IEEE Trans Biomed Eng 1980; BME-27(6): 306-12.
[http://dx.doi.org/10.1109/TBME.1980.326738] [PMID: 7390527]
[31]
Cukiert A. Vagus nerve stimulation for epilepsy: An evidence-based approach. Prog Neurol Surg 2016; 29: 39-52.
[http://dx.doi.org/10.1159/000434654] [PMID: 26393531]
[32]
Dalgaard L. Comparison of minipig, dog, monkey and human drug metabolism and disposition. J Pharmacol Toxicol Methods 2015; 74: 80-92.
[http://dx.doi.org/10.1016/j.vascn.2014.12.005] [PMID: 25545337]
[33]
Dalic L, Cook M. Managing drug-resistant epilepsy: challenges and solutions. Neuropsychiatr Dis Treat 2016; 12: 2605-16.
[http://dx.doi.org/10.2147/NDT.S84852] [PMID: 27789949]
[34]
Doostmohammadi M, Rahimi HR. ADME and toxicity considerations for tramadol: From basic research to clinical implications. Expert Opin Drug Metab Toxicol 2020; 16(7): 627-40.
[http://dx.doi.org/10.1080/17425255.2020.1776700] [PMID: 32476523]
[35]
Dostrovsky JO, Lozano AM. Mechanisms of deep brain stimulation. Mov Disord 2002; 17(S3): S63-8.
[http://dx.doi.org/10.1002/mds.10143]
[36]
Drees C, Afra P, Verner R, et al. Feasibility study of microburst VNS therapy in drug-resistant focal and generalized epilepsy. Brain Stimul 2024; 17(2): 382-91.
[http://dx.doi.org/10.1016/j.brs.2024.03.010] [PMID: 38499287]
[37]
Ekstein D, Schachter SC. Natural products in epilepsy- the present situation and perspectives for the future. Pharmaceuticals 2010; 3(5): 1426-45.
[http://dx.doi.org/10.3390/ph3051426] [PMID: 27713311]
[38]
Ezzyat Y, Wanda PA, Levy DF, et al. Closed-loop stimulation of temporal cortex rescues functional networks and improves memory. Nat Commun 2018; 9(1): 365.
[http://dx.doi.org/10.1038/s41467-017-02753-0] [PMID: 29410414]
[39]
Fan JJ, Shan W, Wu JP, Wang Q. Research progress of vagus nerve stimulation in the treatment of epilepsy. CNS Neurosci Ther 2019; 25(11): 1222-8.
[http://dx.doi.org/10.1111/cns.13209] [PMID: 31429206]
[40]
Forsgren L, Beghi E, Õun A, Sillanpää M. The epidemiology of epilepsy in Europe - A systematic review. Eur J Neurol 2005; 12(4): 245-53.
[http://dx.doi.org/10.1111/j.1468-1331.2004.00992.x] [PMID: 15804240]
[41]
Fortuna A, Alves G, Soares-da-Silva P, Falcão A. Pharmacokinetics, brain distribution and plasma protein binding of carbamazepine and nine derivatives: New set of data for predictive in silico ADME models. Epilepsy Res 2013; 107(1-2): 37-50.
[http://dx.doi.org/10.1016/j.eplepsyres.2013.08.013] [PMID: 24050973]
[42]
Fountas KN, Smith JR, Murro AM, Politsky J, Park YD, Jenkins PD. Implantation of a closed-loop stimulation in the management of medically refractory focal epilepsy: A technical note. Stereotact Funct Neurosurg 2005; 83(4): 153-8.
[http://dx.doi.org/10.1159/000088656] [PMID: 16205108]
[43]
French JA, White HS, Klitgaard H, et al. Development of new treatment approaches for epilepsy: Unmet needs and opportunities. Epilepsia 2013; 54(s4) (Suppl. 4): 3-12.
[http://dx.doi.org/10.1111/epi.12294] [PMID: 23909849]
[44]
Galanopoulou AS, Buckmaster PS, Staley KJ, et al. Identification of new epilepsy treatments: Issues in preclinical methodology. Epilepsia 2012; 53(3): 571-82.
[http://dx.doi.org/10.1111/j.1528-1167.2011.03391.x] [PMID: 22292566]
[45]
Gazola AC, Costa GM, Zucolotto SM, et al. The sedative activity of flavonoids from Passiflora quadrangularis is mediated through the GABAergic pathway. Biomed Pharmacother 2018; 100: 388-93.
[http://dx.doi.org/10.1016/j.biopha.2018.02.002] [PMID: 29454287]
[46]
Gidal BE, Resnick T, Smith MC, Wheless JW. Zonisamide. Neurol Clin Pract 2024; 14(1): e200210.
[http://dx.doi.org/10.1212/CPJ.0000000000200210] [PMID: 38170117]
[47]
Gilani AH, Aziz N, Khan MA, et al. Ethnopharmacological evaluation of the anticonvulsant, sedative and antispasmodic activities of Lavandula stoechas L. J Ethnopharmacol 2000; 71(1-2): 161-7.
[http://dx.doi.org/10.1016/S0378-8741(99)00198-1] [PMID: 10904159]
[48]
Guiraud D, Andreu D, Bonnet S, et al. Vagus nerve stimulation: State of the art of stimulation and recording strategies to address autonomic function neuromodulation. J Neural Eng 2016; 13(4): 041002.
[http://dx.doi.org/10.1088/1741-2560/13/4/041002] [PMID: 27351347]
[49]
Gupta G, Kazmi I, Afzal M, et al. Sedative, antiepileptic and antipsychotic effects of Viscum album L. (Loranthaceae) in mice and rats. J Ethnopharmacol 2012; 141(3): 810-6.
[http://dx.doi.org/10.1016/j.jep.2012.03.013] [PMID: 22449438]
[50]
Gürdere MB, Budak Y, Kocyigit UM, Taslimi P, Tüzün B, Ceylan M. ADME properties, bioactivity and molecular docking studies of 4-amino-chalcone derivatives: New analogues for the treatment of Alzheimer, glaucoma and epileptic diseases. In Silico Pharmacol 2021; 9(1): 34.
[http://dx.doi.org/10.1007/s40203-021-00094-x] [PMID: 33968600]
[51]
Hauser WA, Annegers JF, Rocca WA. Descriptive epidemiology of epilepsy: Contributions of population-based studies from Rochester, Minnesota. Mayo Clin Proc 1996; 71(6): 576-86.
[http://dx.doi.org/10.4065/71.6.576] [PMID: 8642887]
[52]
He LY, Hu MB, Li RL, et al. Natural medicines for the treatment of epilepsy: Bioactive components, pharmacology and mechanism. Front Pharmacol 2021; 12: 604040.
[http://dx.doi.org/10.3389/fphar.2021.604040] [PMID: 33746751]
[53]
Hell F, Palleis C, Mehrkens JH, Koeglsperger T, Bötzel K. Deep brain stimulation programming 2.0: Future perspectives for target identification and adaptive closed loop stimulation. Front Neurol 2019; 10: 314.
[http://dx.doi.org/10.3389/fneur.2019.00314] [PMID: 31001196]
[54]
Henry TR. Therapeutic mechanisms of vagus nerve stimulation. Neurology 2002; 59(6) (Suppl. 4): S3-S14.
[PMID: 12270962]
[55]
Ho TY, Tang NY, Hsiang CY, Hsieh CL. Uncaria rhynchophylla and rhynchophylline improved kainic acid-induced epileptic seizures via IL-1β and brain-derived neurotrophic factor. Phytomedicine 2014; 21(6): 893-900.
[http://dx.doi.org/10.1016/j.phymed.2014.01.011] [PMID: 24636743]
[56]
Holmes MD, Silbergeld DL, Drouhard D, Wilensky AJ, Ojemann LM. Effect of vagus nerve stimulation on adults with pharmacoresistant generalized epilepsy syndromes. Seizure 2004; 13(5): 340-5.
[http://dx.doi.org/10.1016/j.seizure.2003.09.002] [PMID: 15158706]
[57]
Howland RH. Vagus nerve stimulation. Curr Behav Neurosci Rep 2014; 1(2): 64-73.
[http://dx.doi.org/10.1007/s40473-014-0010-5] [PMID: 24834378]
[58]
Huang Y, Ma S, Wang Y, et al. The role of traditional Chinese herbal medicines and bioactive ingredients on ion channels: A brief review and prospect. CNS Neurol Disord Drug Targets 2019; 18(4): 257-65.
[http://dx.doi.org/10.2174/1871527317666181026165400] [PMID: 30370864]
[59]
Ingusci S, Cattaneo S, Verlengia G, Zucchini S, Simonato M. A matter of genes: the hurdles of gene therapy for epilepsy. Epilepsy Curr 2019; 19(1): 38-43.
[http://dx.doi.org/10.1177/1535759718822846] [PMID: 30838918]
[60]
Jacobs MP, Fischbach GD, Davis MR, et al. Future directions for epilepsy research. Neurology 2001; 57(9): 1536-42.
[http://dx.doi.org/10.1212/WNL.57.9.1536] [PMID: 11706087]
[61]
Jangra S, Budhwar V. Ethno medicinal plants with anticonvulsant activity through GABAergic mechanism - A review. Indian J Nat Prod Resour 2022; 13(3): 274-86.
[62]
Johnson RL, Wilson CG. A review of vagus nerve stimulation as a therapeutic intervention. J Inflamm Res 2018; 11: 203-13.
[http://dx.doi.org/10.2147/JIR.S163248] [PMID: 29844694]
[63]
Kakooza-Mwesige A. The importance of botanical treatments in traditional societies and challenges in developing countries. Epilepsy Behav 2015; 52(Pt B): 297-307.
[http://dx.doi.org/10.1016/j.yebeh.2015.06.017] [PMID: 26293314]
[64]
Kamiński K, Mogilski S, Abram M, et al. KA-104, a new multitargeted anticonvulsant with potent antinociceptive activity in preclinical models. Epilepsia 2020; 61(10): 2119-28.
[http://dx.doi.org/10.1111/epi.16669] [PMID: 32929733]
[65]
Kandar HK, Das SK, Ghosh L, Gupta BK. Epilepsy and its management: A review. J Pharm Sci Technol 2012; 1(2): 20-6.
[66]
Kanter-Schlifke I, Georgievska B, Kirik D, Kokaia M. Seizure suppression by GDNF gene therapy in animal models of epilepsy. Mol Ther 2007; 15(6): 1106-13.
[http://dx.doi.org/10.1038/sj.mt.6300148] [PMID: 17387333]
[67]
Keimpema E, Alpár A, Howell F, et al. Diacylglycerol lipase α manipulation reveals developmental roles for intercellular endocannabinoid signaling. Sci Rep 2013; 3(1): 2093.
[http://dx.doi.org/10.1038/srep02093] [PMID: 23806960]
[68]
Koller WC, Lyons KE, Wilkinson SB, Troster AI, Pahwa R. Long-term safety and efficacy of unilateral deep brain stimulation of the thalamus in essential tremor. Mov Disord 2001; 16(3): 464-8.
[http://dx.doi.org/10.1002/mds.1089] [PMID: 11391740]
[69]
Kringelbach ML, Jenkinson N, Owen SLF, Aziz TZ. Translational principles of deep brain stimulation. Nat Rev Neurosci 2007; 8(8): 623-35.
[http://dx.doi.org/10.1038/nrn2196] [PMID: 17637800]
[70]
Kullmann DM, Schorge S, Walker MC, Wykes RC. Gene therapy in epilepsy—is it time for clinical trials? Nat Rev Neurol 2014; 10(5): 300-4.
[http://dx.doi.org/10.1038/nrneurol.2014.43] [PMID: 24638133]
[71]
Kuo CS, Kwan CY, Gong CL, et al. Apocynum venetum leaf aqueous extract inhibits voltage-gated sodium channels of mouse neuroblastoma N2A cells. J Ethnopharmacol 2011; 136(1): 149-55.
[http://dx.doi.org/10.1016/j.jep.2011.04.035] [PMID: 21530630]
[72]
Kwok CS, Johnson EL, Krauss GL. Comparing safety and efficacy of “third-generation” antiepileptic drugs: long-term extension and post-marketing treatment. CNS Drugs 2017; 31(11): 959-74.
[http://dx.doi.org/10.1007/s40263-017-0480-6] [PMID: 29204953]
[73]
Li F, Singh AV. Recent advancements to enhance the therapeutic efficacy of antiepileptic drugs. Acta Pharm 2021; 71(4): 527-44.
[http://dx.doi.org/10.2478/acph-2021-0041] [PMID: 36651558]
[74]
Liu W, Ge T, Pan Z, Leng Y, Lv J, Li B. The effects of herbal medicine on epilepsy. Oncotarget 2017; 8(29): 48385-97.
[http://dx.doi.org/10.18632/oncotarget.16801] [PMID: 28423368]
[75]
Löscher W, Klein P. The pharmacology and clinical efficacy of antiseizure medications: From bromide salts to cenobamate and beyond. CNS Drugs 2021; 35(9): 935-63.
[http://dx.doi.org/10.1007/s40263-021-00827-8] [PMID: 34145528]
[76]
Löscher W, Potschka H, Sisodiya SM, Vezzani A. Drug resistance in epilepsy: Clinical impact, potential mechanisms, and new innovative treatment options. Pharmacol Rev 2020; 72(3): 606-38.
[http://dx.doi.org/10.1124/pr.120.019539] [PMID: 32540959]
[77]
Löscher W, Gernert M, Heinemann U. Cell and gene therapies in epilepsy - Promising avenues or blind alleys? Trends Neurosci 2008; 31(2): 62-73.
[http://dx.doi.org/10.1016/j.tins.2007.11.012] [PMID: 18201772]
[78]
Malik R, Mehta P, Srivastava S, Choudhary BS, Sharma M. Pharmacophore modeling, 3D-QSAR, and in silico ADME prediction of N-pyridyl and pyrimidine benzamides as potent antiepileptic agents. J Recept Signal Transduct Res 2017; 37(3): 259-66.
[http://dx.doi.org/10.1080/10799893.2016.1217883] [PMID: 27607834]
[79]
Manford M. Recent advances in epilepsy. J Neurol 2017; 264(8): 1811-24.
[http://dx.doi.org/10.1007/s00415-017-8394-2] [PMID: 28120042]
[80]
Mao H, Chen Y, Ge Q, Ye L, Cheng H. Short-and long-term response of vagus nerve stimulation therapy in drug-resistant epilepsy: A systematic review and meta-analysis. Neuromodulation 2022; 25(3): 327-42.
[http://dx.doi.org/10.1111/ner.13509] [PMID: 35396068]
[81]
Martinez-Ramirez D, Jimenez-Shahed J, Leckman JF, et al. Efficacy and safety of deep brain stimulation in Tourette syndrome: The international Tourette syndrome deep brain stimulation public database and registry. JAMA Neurol 2018; 75(3): 353-9.
[http://dx.doi.org/10.1001/jamaneurol.2017.4317] [PMID: 29340590]
[82]
Mertens A, Raedt R, Gadeyne S, Carrette E, Boon P, Vonck K. Recent advances in devices for vagus nerve stimulation. Expert Rev Med Devices 2018; 15(8): 527-39.
[http://dx.doi.org/10.1080/17434440.2018.1507732] [PMID: 30071175]
[83]
Mesraoua B, Deleu D, Kullmann DM, et al. Novel therapies for epilepsy in the pipeline. Epilepsy Behav 2019; 97: 282-90.
[http://dx.doi.org/10.1016/j.yebeh.2019.04.042] [PMID: 31284159]
[84]
Milby AH, Halpern CH, Baltuch GH. Vagus nerve stimulation for epilepsy and depression. Neurotherapeutics 2008; 5(1): 75-85.
[http://dx.doi.org/10.1016/j.nurt.2007.10.071] [PMID: 18164486]
[85]
Miocinovic S, Somayajula S, Chitnis S, Vitek JL. History, applications, and mechanisms of deep brain stimulation. JAMA Neurol 2013; 70(2): 163-71.
[http://dx.doi.org/10.1001/2013.jamaneurol.45] [PMID: 23407652]
[86]
Mir MA, Malik AB, Qadrie Z, Dar MA. Adverse reactions caused by antiepileptic medications in real-world medical settings. IJCRPP 2023; 10: 25-35.
[87]
Miziak B, Chrościńska-Krawczyk M, Błaszczyk B, Radzik I, Czuczwar SJ. Novel approaches to anticonvulsant drug discovery. Expert Opin Drug Discov 2013; 8(11): 1415-27.
[http://dx.doi.org/10.1517/17460441.2013.837047] [PMID: 24050182]
[88]
Morris G, Schorge S. Gene therapy for neurological disease: State of the art and opportunities for next-generation approaches. Neuroscience 2022; 490: 309-14.
[http://dx.doi.org/10.1016/j.neuroscience.2022.03.010] [PMID: 35304290]
[89]
Morris G III. Efficacy and tolerability of gabapentin in clinical practice. Clin Ther 1995; 17(5): 891-900.
[http://dx.doi.org/10.1016/0149-2918(95)80067-0] [PMID: 8595641]
[90]
Moshé SL, Perucca E, Ryvlin P, Tomson T. Epilepsy: New advances. Lancet 2015; 385(9971): 884-98.
[http://dx.doi.org/10.1016/S0140-6736(14)60456-6] [PMID: 25260236]
[91]
Naegele JR, Maisano X, Yang J, Royston S, Ribeiro E. Recent advancements in stem cell and gene therapies for neurological disorders and intractable epilepsy. Neuropharmacology 2010; 58(6): 855-64.
[http://dx.doi.org/10.1016/j.neuropharm.2010.01.019] [PMID: 20146928]
[92]
Nah SY. Ginseng ginsenoside pharmacology in the nervous system: Involvement in the regulation of ion channels and receptors. Front Physiol 2014; 5(5): 98.
[http://dx.doi.org/10.3389/fphys.2014.00098] [PMID: 24678300]
[93]
Niriayo YL, Gebregziabher T, Demoz GT, Tesfay N, Gidey K. Drug therapy problems and contributing factors among patients with epilepsy. PLoS One 2024; 19(3): e0299968.
[http://dx.doi.org/10.1371/journal.pone.0299968] [PMID: 38451979]
[94]
NMD PO. Molecular and genetic therapies 11. Neuromuscular Disorders: Treatment and Management 2021; 19(4): 225.
[95]
Noé F, Frasca A, Balducci C, et al. Neuropeptide Y overexpression using recombinant adeno-associated viral vectors. Neurotherapeutics 2009; 6(2): 300-6.
[http://dx.doi.org/10.1016/j.nurt.2009.01.012] [PMID: 19332323]
[96]
Noè F, Pool AH, Nissinen J, et al. Neuropeptide Y gene therapy decreases chronic spontaneous seizures in a rat model of temporal lobe epilepsy. Brain 2008; 131(6): 1506-15.
[http://dx.doi.org/10.1093/brain/awn079] [PMID: 18477594]
[97]
Orosz I, McCormick D, Zamponi N, et al. Vagus nerve stimulation for drug-resistant epilepsy: A European long-term study up to 24 months in 347 children. Epilepsia 2014; 55(10): 1576-84.
[http://dx.doi.org/10.1111/epi.12762] [PMID: 25231724]
[98]
Paradiso B, Zucchini S, Su T, et al. Localized overexpression of FGF-2 and BDNF in hippocampus reduces mossy fibre sprouting and spontaneous seizures up to 4 weeks after pilocarpine-induced status epilepticus. Epilepsia 2011; 52(3): 572-8.
[99]
Parastarfeizabadi M, Kouzani AZ. Advances in closed-loop deep brain stimulation devices. J Neuroeng Rehabil 2017; 14(1): 79.
[http://dx.doi.org/10.1186/s12984-017-0295-1] [PMID: 28800738]
[100]
Pellock JM. Efficacy and adverse effects of antiepileptic drugs. Pediatr Clin North Am 1989; 36(2): 435-48.
[http://dx.doi.org/10.1016/S0031-3955(16)36658-5] [PMID: 2648284]
[101]
Perlmutter JS, Mink JW. Deep brain stimulation. Annu Rev Neurosci 2006; 29(1): 229-57.
[http://dx.doi.org/10.1146/annurev.neuro.29.051605.112824] [PMID: 16776585]
[102]
Perucca P, Scheffer IE, Kiley M. The management of epilepsy in children and adults. Med J Aust 2018; 208(5): 226-33.
[http://dx.doi.org/10.5694/mja17.00951] [PMID: 29540143]
[103]
Pitkänen A, Nehlig A, Brooks-Kayal AR, et al. Issues related to development of antiepileptogenic therapies. Epilepsia 2013; 54(s4) (Suppl. 4): 35-43.
[http://dx.doi.org/10.1111/epi.12297] [PMID: 23909852]
[104]
Pouratian N, Thakkar S, Kim W, Bronstein JM. Deep brain stimulation for the treatment of Parkinson’s disease: Efficacy and safety. Degener Neurol Neuromuscul Dis 2012; 2012(2): 107-17.
[PMID: 24298202]
[105]
Powell KL, Fitzgerald X, Shallue C, et al. Gene therapy mediated seizure suppression in Genetic Generalised Epilepsy: Neuropeptide Y overexpression in a rat model. Neurobiol Dis 2018; 113: 23-32.
[http://dx.doi.org/10.1016/j.nbd.2018.01.016] [PMID: 29414380]
[106]
Privitera M. Current challenges in the management of epilepsy. Am J Manag Care 2011; 17 (Suppl. 7): S195-203.
[PMID: 21761951]
[107]
Qiu Y, O’Neill N, Maffei B, et al. On-demand cell-autonomous gene therapy for brain circuit disorders. Science 2022; 378(6619): 523-32.
[http://dx.doi.org/10.1126/science.abq6656] [PMID: 36378958]
[108]
Quirk GJ, Likhtik E, Pelletier JG, Paré D. Stimulation of medial prefrontal cortex decreases the responsiveness of central amygdala output neurons. J Neurosci 2003; 23(25): 8800-7.
[http://dx.doi.org/10.1523/JNEUROSCI.23-25-08800.2003] [PMID: 14507980]
[109]
Radhakrishnan K. Challenges in the management of epilepsy in resource-poor countries. Nat Rev Neurol 2009; 5(6): 323-30.
[http://dx.doi.org/10.1038/nrneurol.2009.53] [PMID: 19455183]
[110]
Richichi C, Lin EJD, Stefanin D, et al. Anticonvulsant and antiepileptogenic effects mediated by adeno-associated virus vector neuropeptide Y expression in the rat hippocampus. J Neurosci 2004; 24(12): 3051-9.
[http://dx.doi.org/10.1523/JNEUROSCI.4056-03.2004] [PMID: 15044544]
[111]
Rogawski MA, Holmes GL. Nontraditional epilepsy treatment approaches. Neurotherapeutics 2009; 6(2): 213-7.
[http://dx.doi.org/10.1016/j.nurt.2009.02.002] [PMID: 19332312]
[112]
Rosin B, Slovik M, Mitelman R, et al. Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron 2011; 72(2): 370-84.
[http://dx.doi.org/10.1016/j.neuron.2011.08.023] [PMID: 22017994]
[113]
Ryvlin P, Jehi LE. Neuromodulation for refractory epilepsy. Epilepsy Curr 2022; 22(1): 11-7.
[http://dx.doi.org/10.1177/15357597211065587] [PMID: 35233189]
[114]
Ryvlin P, Rheims S, Hirsch LJ, Sokolov A, Jehi L. Neuromodulation in epilepsy: State-of-the-art approved therapies. Lancet Neurol 2021; 20(12): 1038-47.
[http://dx.doi.org/10.1016/S1474-4422(21)00300-8] [PMID: 34710360]
[115]
Sander JW. The epidemiology of epilepsy revisited. Curr Opin Neurol 2003; 16(2): 165-70.
[http://dx.doi.org/10.1097/00019052-200304000-00008] [PMID: 12644744]
[116]
Santaniello S, Fiengo G, Glielmo L, Grill WM. Closed-loop control of deep brain stimulation: A simulation study. IEEE Trans Neural Syst Rehabil Eng 2011; 19(1): 15-24.
[http://dx.doi.org/10.1109/TNSRE.2010.2081377] [PMID: 20889437]
[117]
Schachter SC, Saper CB. Vagus nerve stimulation. Epilepsia 1998; 39(7): 677-86.
[http://dx.doi.org/10.1111/j.1528-1157.1998.tb01151.x] [PMID: 9670894]
[118]
Schachter SC. Botanicals and herbs: A traditional approach to treating epilepsy. Neurotherapeutics 2009; 6(2): 415-20.
[http://dx.doi.org/10.1016/j.nurt.2008.12.004] [PMID: 19332338]
[119]
Schaldach M. What is closed loop stimulation. Prog Biomed Res 1998; 3(2): 49-55.
[120]
Senanayake N, Román GC. Epidemiology of epilepsy in developing countries. Bull World Health Organ 1993; 71(2): 247-58.
[PMID: 8490989]
[121]
Shahwan A, Bailey C, Maxiner W, Harvey AS. Vagus nerve stimulation for refractory epilepsy in children: More to VNS than seizure frequency reduction. Epilepsia 2009; 50(5): 1220-8.
[http://dx.doi.org/10.1111/j.1528-1167.2008.01940.x] [PMID: 19170732]
[122]
Sharma AK, Rani E, Waheed A, Rajput SK. Pharmacoresistant epilepsy: A current update on non-conventional pharmacological and non-pharmacological interventions. J Epilepsy Res 2015; 5(1): 1-8.
[http://dx.doi.org/10.14581/jer.15001] [PMID: 26157666]
[123]
Sheth RD, Stafstrom CE, Hsu D. Nonpharmacological treatment options for epilepsy. Semin Pediatr Neurol 2005; 12(2): 106-13.
[http://dx.doi.org/10.1016/j.spen.2005.03.005] [PMID: 16114176]
[124]
Shorvon SD, Bermejo PE, Gibbs AA, Huberfeld G, Kälviäinen R. Antiepileptic drug treatment of generalized tonic–clonic seizures: An evaluation of regulatory data and five criteria for drug selection. Epilepsy Behav 2018; 82: 91-103.
[http://dx.doi.org/10.1016/j.yebeh.2018.01.039] [PMID: 29602083]
[125]
Shrivastava A, Goyal MK, Gupta JK. Epileptogenic drugs and seizures: A comprehensive review of current knowledge. Int J Pharm Res 2020; 12(2): 4-11.
[126]
Shrivastava A, Gupta JK, Goyal MK. Flavonoids and antiepileptic drugs: A comprehensive review on their neuroprotective potentials. J Med Pharm Allied Sci 2022; 11(1): 4179-86.
[127]
Shrivastava A, Gupta JK, Goyal MK. Neuroprotective efficacy of quercetin with lamotrigine and gabapentin against pentylenetetrazole-induced kindling and associated behavioral comorbidities in mice. Indian J Pharm Educ Res 2022; 56(4s): s659-68.
[http://dx.doi.org/10.5530/ijper.56.4s.212]
[128]
Shrivastava A, Gupta J, Goyal M. Potential efficacy of ocimum sanctum hydro-alcoholic leaf extract as an adjuvant role with phenobarbital: Acute models of epilepsy on mice. Int J Nutr Pharmacol Neurol Dis 2022; 0(0): 0.
[http://dx.doi.org/10.4103/ijnpnd.ijnpnd_9_22]
[129]
Shrivastava A, Gupta JK, Goyal MK. Therapeutic approaches of nanotechnology for epileptic seizures: A comprehensive review of current knowledge. Indian J Pharm Educ Res 2022; 56(3): 628-35.
[http://dx.doi.org/10.5530/ijper.56.3.111]
[130]
Shrivastava A, Gupta JK, Shah K. Neuroprotective potential of orientin with antiepileptic drugs against pentylenetetrazole-induced kindling model and evaluation of behavioral assessment in mice. Curr Enzym Inhib 2024; 20(1): 61-70.
[http://dx.doi.org/10.2174/0115734080276565231024054936]
[131]
Simonato M, Brooks-Kayal AR, Engel J Jr, et al. The challenge and promise of anti-epileptic therapy development in animal models. Lancet Neurol 2014; 13(9): 949-60.
[http://dx.doi.org/10.1016/S1474-4422(14)70076-6] [PMID: 25127174]
[132]
Simonato M. Gene therapy for epilepsy. Epilepsy Behav 2014; 38: 125-30.
[http://dx.doi.org/10.1016/j.yebeh.2013.09.013] [PMID: 24100249]
[133]
Singh A, Trevick S. The epidemiology of global epilepsy. Neurol Clin 2016; 34(4): 837-47.
[http://dx.doi.org/10.1016/j.ncl.2016.06.015] [PMID: 27719996]
[134]
Skarpaas TL, Morrell MJ. Intracranial stimulation therapy for epilepsy. Neurotherapeutics 2009; 6(2): 238-43.
[http://dx.doi.org/10.1016/j.nurt.2009.01.022] [PMID: 19332315]
[135]
Skrehot HC, Englot DJ, Haneef Z. Neuro-stimulation in focal epilepsy: A systematic review and meta-analysis. Epilepsy Behav 2023; 142: 109182.
[http://dx.doi.org/10.1016/j.yebeh.2023.109182] [PMID: 36972642]
[136]
Street JS, Qiu Y, Lignani G. Are genetic therapies for epilepsy ready for the clinic? Epilepsy Curr 2023; 23(4): 245-50.
[http://dx.doi.org/10.1177/15357597231176234] [PMID: 37662470]
[137]
Sun FT, Morrell MJ, Wharen RE Jr. Responsive cortical stimulation for the treatment of epilepsy. Neurotherapeutics 2008; 5(1): 68-74.
[http://dx.doi.org/10.1016/j.nurt.2007.10.069] [PMID: 18164485]
[138]
Takeuchi Y, Harangozó M, Pedraza L, et al. Closed-loop stimulation of the medial septum terminates epileptic seizures. Brain 2021; 144(3): 885-908.
[http://dx.doi.org/10.1093/brain/awaa450] [PMID: 33501929]
[139]
Thijs RD, Surges R, O’Brien TJ, Sander JW. Epilepsy in adults. Lancet 2019; 393(10172): 689-701.
[http://dx.doi.org/10.1016/S0140-6736(18)32596-0] [PMID: 30686584]
[140]
Toffa DH, Touma L, El Meskine T, Bouthillier A, Nguyen DK. Learnings from 30 years of reported efficacy and safety of vagus nerve stimulation (VNS) for epilepsy treatment: A critical review. Seizure 2020; 83: 104-23.
[http://dx.doi.org/10.1016/j.seizure.2020.09.027] [PMID: 33120323]
[141]
Trinka E, Kwan P, Lee B, Dash A. Epilepsy in Asia: Disease burden, management barriers, and challenges. Epilepsia 2019; 60(S1) (Suppl. 1): 7-21.
[http://dx.doi.org/10.1111/epi.14458] [PMID: 29953579]
[142]
Uwano T, Nishijo H, Ono T, Tamura R. Neuronal responsiveness to various sensory stimuli, and associative learning in the rat amygdala. Neuroscience 1995; 68(2): 339-61.
[http://dx.doi.org/10.1016/0306-4522(95)00125-3] [PMID: 7477945]
[143]
Vezzani A. The promise of gene therapy for the treatment of epilepsy. Expert Rev Neurother 2007; 7(12): 1685-92.
[http://dx.doi.org/10.1586/14737175.7.12.1685] [PMID: 18052764]
[144]
Voineskos D, Daskalakis ZJ, Blumberger DM. Management of treatment-resistant depression: Challenges and strategies. Neuropsychiatr Dis Treat 2020; 16: 221-34.
[http://dx.doi.org/10.2147/NDT.S198774] [PMID: 32021216]
[145]
Vonck K, Van Laere K, Dedeurwaerdere S, Caemaert J, De Reuck J, Boon P. The mechanism of action of vagus nerve stimulation for refractory epilepsy: The current status. J Clin Neurophysiol 2001; 18(5): 394-401.
[http://dx.doi.org/10.1097/00004691-200109000-00002] [PMID: 11709643]
[146]
Wahab A. Difficulties in treatment and management of epilepsy and challenges in new drug development. Pharmaceuticals 2010; 3(7): 2090-110.
[http://dx.doi.org/10.3390/ph3072090] [PMID: 27713344]
[147]
Weinberg MS, McCown TJ. Current prospects and challenges for epilepsy gene therapy. Exp Neurol 2013; 244: 27-35.
[http://dx.doi.org/10.1016/j.expneurol.2011.10.003] [PMID: 22008258]
[148]
Winter F, Krueger MT, Delev D, et al. Current state of the art of traditional and minimal invasive epilepsy surgery approaches. Brain and Spine 2024; 4: 102755.
[http://dx.doi.org/10.1016/j.bas.2024.102755] [PMID: 38510599]
[149]
Witkin JM, Golani L, Smith JL. New and emerging antiepileptic drugs. In: Burger’s Medicinal Chemistry, Drug Discovery and Development. (8th Ed.), John Wiley and Sons 2021.
[http://dx.doi.org/10.1002/0471266949.bmc099.pub3]
[150]
Wu Y, Mo J, Sui L, et al. Deep brain stimulation in treatment-resistant depression: A systematic review and meta-analysis on efficacy and safety. Front Neurosci 2021; 15: 655412.
[http://dx.doi.org/10.3389/fnins.2021.655412] [PMID: 33867929]
[151]
Yang H, Shi W, Fan J, et al. Transcutaneous auricular vagus nerve stimulation (Ta-vns) for treatment of drug-resistant epilepsy: A randomized, double-blind clinical trial. Neurotherapeutics 2023; 20(3): 870-80.
[http://dx.doi.org/10.1007/s13311-023-01353-9] [PMID: 36995682]
[152]
Young D, Fong DM, Lawlor PA, et al. Adenosine kinase, glutamine synthetase and EAAT2 as gene therapy targets for temporal lobe epilepsy. Gene Ther 2014; 21(12): 1029-40.
[http://dx.doi.org/10.1038/gt.2014.82] [PMID: 25231174]
[153]
Yuan H, Silberstein SD. Vagus nerve and vagus nerve stimulation, a comprehensive review: Part I. Headache 2016; 56(1): 71-8.
[http://dx.doi.org/10.1111/head.12647] [PMID: 26364692]
[154]
Zhang L, Wang Y. Gene therapy in epilepsy. Biomed Pharmacother 2021; 143: 112075.
[http://dx.doi.org/10.1016/j.biopha.2021.112075] [PMID: 34488082]
[155]
Zhao C, Zhang C, Xing Z, Ahmad Z, Li JS, Chang MW. Pharmacological effects of natural Ganoderma and its extracts on neurological diseases: A comprehensive review. Int J Biol Macromol 2019; 121: 1160-78.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.076] [PMID: 30342128]
[156]
Zrenner C, Ziemann U. Closed-loop stimulation. Biol Psychiatry 2024; 95(6): 545-52.
[http://dx.doi.org/10.1016/j.biopsych.2023.09.014] [PMID: 37743002]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy