Mini-Review Article

Periodontal Tissue Homoeostasis, Immunity, the Red Complex Pathogens, and Dysbiosis: Unraveling the microRNA Effect

Author(s): Swastik Mishra and Lakshmi Puzhankara*

Volume 14, Issue 1, 2025

Published on: 25 July, 2024

Page: [9 - 18] Pages: 10

DOI: 10.2174/0122115366305491240708060422

Price: $65

Abstract

microRNAs are a family of small, non-coding RNA molecules that can regulate the translation of messenger RNAs (mRNAs). Numerous miRNAs have been proposed as potential indicators for periodontal disease, and their regulation might serve as a potent means of restricting the disease process.

MiRNAs act as important immune system regulators that promote the production of many cytokines, including interferon (IFN), tumour necrosis factor (TNF), and IL-1as well as RANK. Investigations pertaining to the use of specific miRNAs as therapeutic agents are underway. They can influence a variety of regulatory organs and target several genes. Additionally, distinct components of the same expression pathway can be controlled by combining miRNAs and their antagonists. In recent years, many miRNA delivery methods have been created for therapeutic applications.

Studies pertaining to the role of miRNAs in periodontal disease pathogenesis may pave the way for the use of miRNAs as biomarkers of periodontal disease. A complete understanding of the role of miRNA in periodontal disease and its mechanism of action can pave the way towards therapeutic strategies that can reduce or even prevent the progression of periodontal diseases.

Keywords: Biomarkers, immunity, mRNA, miRNA, periodontal disease, red complex pathogens.

Graphical Abstract
[1]
Abdulkareem AA, Al-Taweel FB, Al-Sharqi AJB, Gul SS, Sha A, Chapple ILC. Current concepts in the pathogenesis of periodontitis: from symbiosis to dysbiosis. J Oral Microbiol 2023; 15(1): 2197779.
[http://dx.doi.org/10.1080/20002297.2023.2197779] [PMID: 37025387]
[2]
Ebersole JL. Humoral immune responses in gingival crevice fluid: local and systemic implications. Periodontol 2000 2003; 31(1): 135-66.
[http://dx.doi.org/10.1034/j.1600-0757.2003.03109.x] [PMID: 12657000]
[3]
Hajishengallis G. Immunomicrobial pathogenesis of periodontitis: keystones, pathobionts, and host response. Trends Immunol 2014; 35(1): 3-11.
[http://dx.doi.org/10.1016/j.it.2013.09.001] [PMID: 24269668]
[4]
Hajishengallis G, Lamont RJ. Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol Oral Microbiol 2012; 27(6): 409-19.
[http://dx.doi.org/10.1111/j.2041-1014.2012.00663.x] [PMID: 23134607]
[5]
Olsen I, Singhrao SK, Osmundsen H. Periodontitis, pathogenesis and progression: miRNA-mediated cellular responses to Porphyromonas gingivalis. J Oral Microbiol 2017; 9(1): 1333396.
[http://dx.doi.org/10.1080/20002297.2017.1333396] [PMID: 28748037]
[6]
Kebschull M, Papapanou PN. Mini but mighty: micro RNA s in the pathobiology of periodontal disease. Periodontol 2000 2015; 69(1): 201-20.
[http://dx.doi.org/10.1111/prd.12095] [PMID: 26252410]
[7]
Hajishengallis G, Darveau RP, Curtis MA. The keystone-pathogen hypothesis. Nat Rev Microbiol 2012; 10(10): 717-25.
[http://dx.doi.org/10.1038/nrmicro2873] [PMID: 22941505]
[8]
Aravindraja C, Jeepipalli S, Vekariya KM, Botello-Escalante R, Chan EKL, Kesavalu L. Oral Spirochete Treponema denticola Intraoral Infection Reveals Unique miR-133a, miR-486, miR-126-3p, miR-126-5p miRNA Expression Kinetics during Periodontitis. Int J Mol Sci 2023; 24(15): 12105.
[http://dx.doi.org/10.3390/ijms241512105] [PMID: 37569480]
[9]
Aravindraja C, Jeepipalli S, Duncan W, et al. Unique miRomics Expression Profiles in Tannerella forsythia-infected mandibles during periodontitis using machine Learning. Int J Mol Sci 2023; 24(22): 16393.
[http://dx.doi.org/10.3390/ijms242216393] [PMID: 38003583]
[10]
Dangaria SJ, Ito Y, Luan X, Diekwisch TGH. Differentiation of neural-crest-derived intermediate pluripotent progenitors into committed periodontal populations involves unique molecular signature changes, cohort shifts, and epigenetic modifications. Stem Cells Dev 2011; 20(1): 39-52.
[http://dx.doi.org/10.1089/scd.2010.0180] [PMID: 20604680]
[11]
Luan X, Zhou X, Trombetta-eSilva J, et al. MicroRNAs and Periodontal Homeostasis. J Dent Res 2017; 96(5): 491-500.
[http://dx.doi.org/10.1177/0022034516685711] [PMID: 28068481]
[12]
Zeng Y, Qu X, Li H, et al. MicroRNA‐100 regulates osteogenic differentiation of human adipose‐derived mesenchymal stem cells by targeting BMPR2. FEBS Lett 2012; 586(16): 2375-81.
[http://dx.doi.org/10.1016/j.febslet.2012.05.049] [PMID: 22684006]
[13]
Song Q, Zhong L, Chen C, et al. miR-21 synergizes with BMP9 in osteogenic differentiation by activating the BMP9/Smad signaling pathway in murine multilineage cells. Int J Mol Med 2015; 36(6): 1497-506.
[http://dx.doi.org/10.3892/ijmm.2015.2363] [PMID: 26460584]
[14]
Jia J, Feng X, Xu W, et al. MiR-17-5p modulates osteoblastic differentiation and cell proliferation by targeting SMAD7 in non-traumatic osteonecrosis. Exp Mol Med 2014; 46(7): e107-7.
[http://dx.doi.org/10.1038/emm.2014.43] [PMID: 25060766]
[15]
Lin GL, Hankenson KD. Integration of BMP, Wnt, and notch signaling pathways in osteoblast differentiation. J Cell Biochem 2011; 112(12): 3491-501.
[http://dx.doi.org/10.1002/jcb.23287] [PMID: 21793042]
[16]
Bae Y, Yang T, Zeng HC, et al. miRNA-34c regulates Notch signaling during bone development. Hum Mol Genet 2012; 21(13): 2991-3000.
[http://dx.doi.org/10.1093/hmg/dds129] [PMID: 22498974]
[17]
Chen L,. HolmstrØm K, Qiu W, et al. MicroRNA-34a inhibits osteoblast differentiation and in vivo bone formation of human stromal stem cells. Stem Cells 2014; 32(4): 902-12.
[http://dx.doi.org/10.1002/stem.1615] [PMID: 24307639]
[18]
Zhou X, Luan X, Chen Z, et al. MicroRNA-138 Inhibits Periodontal Progenitor Differentiation under Inflammatory Conditions. J Dent Res 2016; 95(2): 230-7.
[http://dx.doi.org/10.1177/0022034515613043] [PMID: 26518300]
[19]
Liu Y, Liu W, Hu C, et al. MiR-17 modulates osteogenic differentiation through a coherent feed-forward loop in mesenchymal stem cells isolated from periodontal ligaments of patients with periodontitis. Stem Cells 2011; 29(11): 1804-16.
[http://dx.doi.org/10.1002/stem.728] [PMID: 21898695]
[20]
Hung PS, Chen FC, Kuang SH, Kao SY, Lin SC, Chang KW. miR-146a induces differentiation of periodontal ligament cells. J Dent Res 2010; 89(3): 252-7.
[http://dx.doi.org/10.1177/0022034509357411] [PMID: 20110513]
[21]
Wu T, Xie M, Wang X, Jiang X, Li J, Huang H. miR-155 modulates TNF-α-inhibited osteogenic differentiation by targeting SOCS1 expression. Bone 2012; 51(3): 498-505.
[http://dx.doi.org/10.1016/j.bone.2012.05.013] [PMID: 22634176]
[22]
Sugatani T, Hruska KA. MicroRNA‐223 is a key factor in osteoclast differentiation. J Cell Biochem 2007; 101(4): 996-9.
[http://dx.doi.org/10.1002/jcb.21335] [PMID: 17471500]
[23]
Nakasa T, Shibuya H, Nagata Y, Niimoto T, Ochi M. The inhibitory effect of microRNA-146a expression on bone destruction in collagen-induced arthritis. Arthritis Rheum 2011; 63(6): 1582-90.
[http://dx.doi.org/10.1002/art.30321] [PMID: 21425254]
[24]
Chen C, Cheng P, Xie H, et al. MiR-503 regulates osteoclastogenesis via targeting RANK. J Bone Miner Res 2014; 29(2): 338-47.
[http://dx.doi.org/10.1002/jbmr.2032] [PMID: 23821519]
[25]
Guo LJ, Liao L, Yang L, Li Y, Jiang TJ. MiR-125a TNF receptor-associated factor 6 to inhibit osteoclastogenesis. Exp Cell Res 2014; 321(2): 142-52.
[http://dx.doi.org/10.1016/j.yexcr.2013.12.001] [PMID: 24360988]
[26]
Kim K, Kim JH, Kim I, et al. MicroRNA-26a regulates RANKL-induced osteoclast formation. Mol Cells 2015; 38(1): 75-80.
[http://dx.doi.org/10.14348/molcells.2015.2241] [PMID: 25518928]
[27]
Zhang J, Zhao H, Chen J, et al. Interferon‐β‐induced miR‐155 inhibits osteoclast differentiation by targeting SOCS1 and MITF. FEBS Lett 2012; 586(19): 3255-62.
[http://dx.doi.org/10.1016/j.febslet.2012.06.047] [PMID: 22771905]
[28]
Mann M, Barad O, Agami R, Geiger B, Hornstein E. miRNA-based mechanism for the commitment of multipotent progenitors to a single cellular fate. Proc Natl Acad Sci USA 2010; 107(36): 15804-9.
[http://dx.doi.org/10.1073/pnas.0915022107] [PMID: 20720163]
[29]
Sugatani T, Vacher J, Hruska KA. A microRNA expression signature of osteoclastogenesis. Blood 2011; 117(13): 3648-57.
[http://dx.doi.org/10.1182/blood-2010-10-311415] [PMID: 21273303]
[30]
Cheng P, Chen C, He HB, et al. miR-148a regulates osteoclastogenesis by targeting V-maf musculoaponeurotic fibrosarcoma oncogene homolog B. J Bone Miner Res 2013; 28(5): 1180-90.
[http://dx.doi.org/10.1002/jbmr.1845] [PMID: 23225151]
[31]
Franceschetti T, Kessler CB, Lee SK, Delany AM. miR-29 promotes murine osteoclastogenesis by regulating osteoclast commitment and migration. J Biol Chem 2013; 288(46): 33347-60.
[http://dx.doi.org/10.1074/jbc.M113.484568] [PMID: 24085298]
[32]
Mizoguchi F, Murakami Y, Saito T, Miyasaka N, Kohsaka H. miR-31 controls osteoclast formation and bone resorption by targeting RhoA. Arthritis Res Ther 2013; 15(5): R102.
[http://dx.doi.org/10.1186/ar4282] [PMID: 24004633]
[33]
Shapiro LF, Freeman K. The relationship between estrogen, estrogen receptors and periodontal disease in adult women. J Mich Dent Assoc 2014; 96(11): 40-4.
[PMID: 25647885]
[34]
Sugatani T, Hruska KA. Down‐regulation of miR‐21 biogenesis by estrogen action contributes to osteoclastic apoptosis. J Cell Biochem 2013; 114(6): 1217-22.
[http://dx.doi.org/10.1002/jcb.24471] [PMID: 23238785]
[35]
Quinn SR, O’Neill LA. A trio of microRNAs that control Toll-like receptor signalling. Int Immunol 2011; 23(7): 421-5.
[http://dx.doi.org/10.1093/intimm/dxr034] [PMID: 21652514]
[36]
O’Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D. MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci USA 2007; 104(5): 1604-9.
[http://dx.doi.org/10.1073/pnas.0610731104] [PMID: 17242365]
[37]
Nagarakanti S, Ramya S, Babu P, Arun KV, Sudarsan S. Differential expression of E-cadherin and cytokeratin 19 and net proliferative rate of gingival keratinocytes in oral epithelium in periodontal health and disease. J Periodontol 2007; 78(11): 2197-202.
[http://dx.doi.org/10.1902/jop.2007.070070] [PMID: 17970688]
[38]
Dai R, Ahmed SA. MicroRNA, a new paradigm for understanding immunoregulation, inflammation, and autoimmune diseases. Transl Res 2011; 157(4): 163-79.
[http://dx.doi.org/10.1016/j.trsl.2011.01.007] [PMID: 21420027]
[39]
Nahid MA, Pauley KM, Satoh M, Chan EKL. miR-146a is critical for endotoxin-induced tolerance: Implication in innate immunity. J Biol Chem 2009; 284(50): 34590-9.
[http://dx.doi.org/10.1074/jbc.M109.056317] [PMID: 19840932]
[40]
Devlin C, Greco S, Martelli F, Ivan M. miR‐210: More than a silent player in hypoxia. IUBMB Life 2011; 63(2): 94-100.
[http://dx.doi.org/10.1002/iub.427] [PMID: 21360638]
[41]
Fasanaro P, D’Alessandra Y, Di Stefano V, et al. MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem 2008; 283(23): 15878-83.
[http://dx.doi.org/10.1074/jbc.M800731200] [PMID: 18417479]
[42]
Fushimi S, Nohno T, Nagatsuka H, Katsuyama H. Involvement of miR‐140‐3p in Wnt3a and TGF β3 signaling pathways during osteoblast differentiation in MC 3T3‐E1 cells. Genes Cells 2018; 23(7): 517-27.
[http://dx.doi.org/10.1111/gtc.12591] [PMID: 29740905]
[43]
Liu X, Zhu W, Wang L, Wu J, Ding F, Song Y. miR-145-5p suppresses osteogenic differentiation of adipose-derived stem cells by targeting semaphorin 3A. In Vitro Cell Dev Biol Anim 2019; 55(3): 189-202.
[http://dx.doi.org/10.1007/s11626-019-00318-7] [PMID: 30747413]
[44]
Liu P, Zhuang Y, Zhang B, et al. miR-140-3p regulates the osteogenic differentiation ability of bone marrow mesenchymal stem cells by targeting spred2-mediated autophagy. Mol Cell Biochem 2021; 476(12): 4277-85.
[http://dx.doi.org/10.1007/s11010-021-04148-8] [PMID: 34406574]
[45]
Liu X, Su K, Kuang S, Fu M, Zhang Z. miR-16-5p and miR-145-5p trigger apoptosis in human gingival epithelial cells by down-regulating BACH2. Int J Clin Exp Pathol 2020; 13(5): 901-11.
[PMID: 32509061]
[46]
Fang C, Li Y. Prospective applications of microRNAs in oral cancer: A review. (Review) Oncol Lett 2019.
[http://dx.doi.org/10.3892/ol.2019.10751]
[47]
Li J, Han Q, Chen H, et al. Carbon Monoxide-Releasing Molecule-3 Enhances Osteogenic Differentiation of Rat Bone Marrow Mesenchymal Stem Cells via miR-195-5p/Wnt3a Pathway. Drug Des Devel Ther 2022; 16: 2101-17.
[http://dx.doi.org/10.2147/DDDT.S367277] [PMID: 35812136]
[48]
Chang M, Lin H, Fu H, Wang B, Han G, Fan M. MicroRNA‐195‐5p Regulates Osteogenic Differentiation of Periodontal Ligament Cells Under Mechanical Loading. J Cell Physiol 2017; 232(12): 3762-74.
[http://dx.doi.org/10.1002/jcp.25856] [PMID: 28181691]
[49]
Pan J, Du M, Cao Z, et al. miR‐146a‐5p attenuates IL‐1β‐induced IL‐6 and IL‐1β expression in a cementoblast‐derived cell line. Oral Dis 2020; 26(6): 1308-17.
[http://dx.doi.org/10.1111/odi.13333] [PMID: 32176411]
[50]
Buragaite-Staponkiene B, Rovas A, Puriene A, et al. Gingival Tissue MiRNA Expression Profiling and an Analysis of Periodontitis-Specific Circulating MiRNAs. Int J Mol Sci 2023; 24(15): 11983.
[http://dx.doi.org/10.3390/ijms241511983] [PMID: 37569358]
[51]
Mayer Y, Balbir-Gurman A, Machtei EE. Anti-tumor necrosis factor-alpha therapy and periodontal parameters in patients with rheumatoid arthritis. J Periodontol 2009; 80(9): 1414-20.
[http://dx.doi.org/10.1902/jop.2009.090015] [PMID: 19722791]
[52]
Suárez Y, Wang C, Manes TD, Pober JS. Cutting edge: TNF-induced microRNAs regulate TNF-induced expression of E-selectin and intercellular adhesion molecule-1 on human endothelial cells: feedback control of inflammation. J Immunol 2010; 184(1): 21-5.
[http://dx.doi.org/10.4049/jimmunol.0902369] [PMID: 19949084]
[53]
Naqvi AR, Fordham JB, Nares S. miR-24, miR-30b, and miR-142-3p Regulate Phagocytosis in Myeloid Inflammatory Cells. J Immunol 2015; 194(4): 1916-27.
[http://dx.doi.org/10.4049/jimmunol.1401893] [PMID: 25601927]
[54]
Fordham JB, Naqvi AR, Nares S. Regulation of miR-24, miR-30b, and miR-142-3p during macrophage and dendritic cell differentiation potentiates innate immunity. J Leukoc Biol 2015; 98(2): 195-207.
[http://dx.doi.org/10.1189/jlb.1A1014-519RR] [PMID: 25990241]
[55]
Xie Y, Shu R, Jiang S, Liu D, Zhang X. Comparison of microRNA profiles of human periodontal diseased and healthy gingival tissues. Int J Oral Sci 2011; 3(3): 125-34.
[http://dx.doi.org/10.4248/IJOS11046] [PMID: 21789961]
[56]
Luan X, Zhou X, Naqvi A, et al. MicroRNAs and immunity in periodontal health and disease. Int J Oral Sci 2018; 10(3): 24.
[http://dx.doi.org/10.1038/s41368-018-0025-y] [PMID: 30078842]
[57]
Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 2006; 103(33): 12481-6.
[http://dx.doi.org/10.1073/pnas.0605298103] [PMID: 16885212]
[58]
Hou J, Wang P, Lin L, et al. MicroRNA-146a feedback inhibits RIG-I-dependent Type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2. J Immunol 2009; 183(3): 2150-8.
[http://dx.doi.org/10.4049/jimmunol.0900707] [PMID: 19596990]
[59]
Pauley KM, Satoh M, Chan AL, Bubb MR, Reeves WH, Chan EKL. Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Res Ther 2008; 10(4): R101.
[http://dx.doi.org/10.1186/ar2493] [PMID: 18759964]
[60]
Zhu J, Chen T, Yang L, et al. Regulation of microRNA-155 in atherosclerotic inflammatory responses by targeting MAP3K10. PLoS One 2012; 7(11): e46551.
[http://dx.doi.org/10.1371/journal.pone.0046551] [PMID: 23189122]
[61]
Wang P, Hou J, Lin L, et al. Inducible microRNA-155 feedback promotes type I IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1. J Immunol 2010; 185(10): 6226-33.
[http://dx.doi.org/10.4049/jimmunol.1000491] [PMID: 20937844]
[62]
Androulidaki A, Iliopoulos D, Arranz A, et al. The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs. Immunity 2009; 31(2): 220-31.
[http://dx.doi.org/10.1016/j.immuni.2009.06.024] [PMID: 19699171]
[63]
Wang Z, Brandt S, Medeiros A, et al. MicroRNA 21 is a homeostatic regulator of macrophage polarization and prevents prostaglandin E2-mediated M2 generation. PLoS One 2015; 10(2): e0115855.
[http://dx.doi.org/10.1371/journal.pone.0115855] [PMID: 25706647]
[64]
Banerjee S, Cui H, Xie N, et al. miR-125a-5p regulates differential activation of macrophages and inflammation. J Biol Chem 2013; 288(49): 35428-36.
[http://dx.doi.org/10.1074/jbc.M112.426866] [PMID: 24151079]
[65]
Banerjee S, Xie N, Cui H, et al. MicroRNA let-7c regulates macrophage polarization. J Immunol 2013; 190(12): 6542-9.
[http://dx.doi.org/10.4049/jimmunol.1202496] [PMID: 23667114]
[66]
Martinez-Nunez RT, Louafi F, Friedmann PS, Sanchez-Elsner T. MicroRNA-155 modulates the pathogen binding ability of dendritic cells (DCs) by down-regulation of DC-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN). J Biol Chem 2009; 284(24): 16334-42.
[http://dx.doi.org/10.1074/jbc.M109.011601] [PMID: 19386588]
[67]
Smyth LA, Boardman DA, Tung SL, Lechler R, Lombardi G. Micro RNA s affect dendritic cell function and phenotype. Immunology 2015; 144(2): 197-205.
[http://dx.doi.org/10.1111/imm.12390] [PMID: 25244106]
[68]
Dunand-Sauthier I, Santiago-Raber ML, Capponi L, et al. Silencing of c-Fos expression by microRNA-155 is critical for dendritic cell maturation and function. Blood 2011; 117(17): 4490-500.
[http://dx.doi.org/10.1182/blood-2010-09-308064] [PMID: 21385848]
[69]
Naqvi AR, Fordham JB, Ganesh B, Nares S. miR-24, miR-30b and miR-142-3p interfere with antigen processing and presentation by primary macrophages and dendritic cells. Sci Rep 2016; 6(1): 32925.
[http://dx.doi.org/10.1038/srep32925] [PMID: 27611009]
[70]
Teteloshvili N, Smigielska-Czepiel K, Kroesen BJ, et al. T-cell Activation Induces Dynamic Changes in miRNA Expression Patterns in CD4 and CD8 T-cell Subsets. MicroRNA 2015; 4(2): 117-22.
[http://dx.doi.org/10.2174/2211536604666150819194636] [PMID: 26290349]
[71]
Baumjohann D, Ansel KM. MicroRNA-mediated regulation of T helper cell differentiation and plasticity. Nat Rev Immunol 2013; 13(9): 666-78.
[http://dx.doi.org/10.1038/nri3494] [PMID: 23907446]
[72]
Fu G, Rybakin V, Brzostek J, Paster W, Acuto O, Gascoigne NRJ. Fine-tuning T cell receptor signaling to control T cell development. Trends Immunol 2014; 35(7): 311-8.
[http://dx.doi.org/10.1016/j.it.2014.05.003] [PMID: 24951034]
[73]
Jindra PT, Bagley J, Godwin JG, Iacomini J. Costimulation-dependent expression of microRNA-214 increases the ability of T cells to proliferate by targeting Pten. J Immunol 2010; 185(2): 990-7.
[http://dx.doi.org/10.4049/jimmunol.1000793] [PMID: 20548023]
[74]
Liu SQ, Jiang S, Li C, Zhang B, Li QJ. miR-17-92 cluster targets phosphatase and tensin homology and Ikaros Family Zinc Finger 4 to promote TH17-mediated inflammation. J Biol Chem 2014; 289(18): 12446-56.
[http://dx.doi.org/10.1074/jbc.M114.550723] [PMID: 24644282]
[75]
Jiang S, Li C, Olive V, et al. Molecular dissection of the miR-17-92 cluster’s critical dual roles in promoting Th1 responses and preventing inducible Treg differentiation. Blood 2011; 118(20): 5487-97.
[http://dx.doi.org/10.1182/blood-2011-05-355644] [PMID: 21972292]
[76]
Banerjee A, Schambach F, DeJong CS, Hammond SM, Reiner SL. Micro‐RNA‐155 inhibits IFN‐γ signaling in CD4 + T cells. Eur J Immunol 2010; 40(1): 225-31.
[http://dx.doi.org/10.1002/eji.200939381] [PMID: 19877012]
[77]
Kumar M, Ahmad T, Sharma A, et al. Let-7 microRNA–mediated regulation of IL-13 and allergic airway inflammation. J Allergy Clin Immunol 2011; 128(5): 1077-85. .e10, 10.
[http://dx.doi.org/10.1016/j.jaci.2011.04.034] [PMID: 21616524]
[78]
Mattes J, Collison A, Plank M, Phipps S, Foster PS. Antagonism of microRNA-126 suppresses the effector function of T H 2 cells and the development of allergic airways disease. Proc Natl Acad Sci USA 2009; 106(44): 18704-9.
[http://dx.doi.org/10.1073/pnas.0905063106] [PMID: 19843690]
[79]
Sethi A, Kulkarni N, Sonar S, Lal G. Role of miRNAs in CD4 T cell plasticity during inflammation and tolerance. Front Genet 2013; 4: 8.
[http://dx.doi.org/10.3389/fgene.2013.00008] [PMID: 23386861]
[80]
Lu LF, Thai TH, Calado DP, et al. Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity 2009; 30(1): 80-91.
[http://dx.doi.org/10.1016/j.immuni.2008.11.010] [PMID: 19144316]
[81]
Lu LF, Boldin MP, Chaudhry A, et al. Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell 2010; 142(6): 914-29.
[http://dx.doi.org/10.1016/j.cell.2010.08.012] [PMID: 20850013]
[82]
Allam JP, Duan Y, Heinemann F, et al. IL-23-producing CD68+ macrophage-like cells predominate within an IL-17-polarized infiltrate in chronic periodontitis lesions. J Clin Periodontol 2011; 38(10): 879-86.
[http://dx.doi.org/10.1111/j.1600-051X.2011.01752.x] [PMID: 21883359]
[83]
Zhao L, Zhou Y, Xu Y, Sun Y, Li L, Chen W. Effect of non-surgical periodontal therapy on the levels of Th17/Th1/Th2 cytokines and their transcription factors in Chinese chronic periodontitis patients. J Clin Periodontol 2011; 38(6): 509-16.
[http://dx.doi.org/10.1111/j.1600-051X.2011.01712.x] [PMID: 21392046]
[84]
Laurence A, O’Shea JJ. TH-17 differentiation: of mice and men. Nat Immunol 2007; 8(9): 903-5.
[http://dx.doi.org/10.1038/ni0907-903] [PMID: 17712339]
[85]
Mycko MP, Cichalewska M, Machlanska A, Cwiklinska H, Mariasiewicz M, Selmaj KW. microRNA-301a regulation of a T-helper 17 immune response controls autoimmune demyelination. Proceedings of the National Academy of Sciences. 109
[http://dx.doi.org/10.1073/pnas.1114325109]
[86]
Gururajan M, Haga CL, Das S, et al. MicroRNA 125b inhibition of B cell differentiation in germinal centers. Int Immunol 2010; 22(7): 583-92.
[http://dx.doi.org/10.1093/intimm/dxq042] [PMID: 20497960]
[87]
Porstner M, Winkelmann R, Daum P, et al. miR‐148a promotes plasma cell differentiation and targets the germinal center transcription factors Mitf and Bach2. Eur J Immunol 2015; 45(4): 1206-15.
[http://dx.doi.org/10.1002/eji.201444637] [PMID: 25678371]
[88]
de Yébenes VG, Bartolomé-Izquierdo N, Nogales-Cadenas R, et al. miR-217 is an oncogene that enhances the germinal center reaction. Blood 2014; 124(2): 229-39.
[http://dx.doi.org/10.1182/blood-2013-12-543611] [PMID: 24850757]
[89]
Naqvi AR, Fordham JB, Khan A, Nares S. MicroRNAs responsive to Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis LPS modulate expression of genes regulating innate immunity in human macrophages. Innate Immun 2014; 20(5): 540-51.
[http://dx.doi.org/10.1177/1753425913501914] [PMID: 24062196]
[90]
Na HS, Park MH, Song YR, et al. Elevated MicroRNA‐128 in Periodontitis Mitigates Tumor Necrosis Factor‐α Response via p38 Signaling Pathway in Macrophages. J Periodontol 2016; 87(9): e173-82.
[http://dx.doi.org/10.1902/jop.2016.160033] [PMID: 27240473]
[91]
Park MH, Park E, Kim HJ, Na HS, Chung J. Porphyromonas gingivalis-induced miR-132 regulates TNFα expression in THP-1 derived macrophages. Springerplus 2016; 5(1): 761.
[http://dx.doi.org/10.1186/s40064-016-2363-6] [PMID: 27386246]
[92]
Xie YF, Shu R, Jiang SY, Liu DL, Ni J, Zhang XL. MicroRNA-146 inhibits pro-inflammatory cytokine secretion through IL-1 receptor-associated kinase 1 in human gingival fibroblasts. J Inflamm 2013; 10(1): 20.
[http://dx.doi.org/10.1186/1476-9255-10-20] [PMID: 23680172]
[93]
Nahid MA, Rivera M, Lucas A, Chan EKL, Kesavalu L. Polymicrobial infection with periodontal pathogens specifically enhances microRNA miR-146a in ApoE-/- mice during experimental periodontal disease. Infect Immun 2011; 79(4): 1597-605.
[http://dx.doi.org/10.1128/IAI.01062-10] [PMID: 21263019]
[94]
Jiang SY, Xue D, Xie YF, et al. The negative feedback regulation of microRNA-146a in human periodontal ligament cells after Porphyromonas gingivalis lipopolysaccharide stimulation. Inflamm Res 2015; 64(6): 441-51.
[http://dx.doi.org/10.1007/s00011-015-0824-y] [PMID: 25948157]
[95]
Moffatt CE, Lamont RJ. Porphyromonas gingivalis induction of microRNA-203 expression controls suppressor of cytokine signaling 3 in gingival epithelial cells. Infect Immun 2011; 79(7): 2632-7.
[http://dx.doi.org/10.1128/IAI.00082-11] [PMID: 21536793]
[96]
Takayanagi H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol 2007; 7(4): 292-304.
[http://dx.doi.org/10.1038/nri2062] [PMID: 17380158]
[97]
Lin HY, Lai RH, Lin ST, et al. Suppressor of cytokine signaling 6 (SOCS6) promotes mitochondrial fission via regulating DRP1 translocation. Cell Death Differ 2013; 20(1): 139-53.
[http://dx.doi.org/10.1038/cdd.2012.106] [PMID: 22955947]
[98]
Ouhara K, Savitri IJ, Fujita T, et al. miR-584 expressed in human gingival epithelial cells is induced by Porphyromonas gingivalis stimulation and regulates interleukin-8 production via lactoferrin receptor. J Periodontol 2014; 85(6): e198-204.
[http://dx.doi.org/10.1902/jop.2013.130335] [PMID: 24228808]
[99]
Olsen I, Amano A. Outer membrane vesicles – offensive weapons or good Samaritans? J Oral Microbiol 2015; 7(1): 27468.
[http://dx.doi.org/10.3402/jom.v7.27468] [PMID: 25840612]
[100]
Choi JW, Kim SC, Hong SH, Lee HJ. Secretable Small RNAs via Outer Membrane Vesicles in Periodontal Pathogens. J Dent Res 2017; 96(4): 458-66.
[http://dx.doi.org/10.1177/0022034516685071] [PMID: 28068479]
[101]
Chen SCY, Constantinides C, Kebschull M, Papapanou PN. MicroRNAs Regulate Cytokine Responses in Gingival Epithelial Cells. Infect Immun 2016; 84(12): 3282-9.
[http://dx.doi.org/10.1128/IAI.00263-16] [PMID: 27600506]
[102]
Mahendra J, Mahendra L, Fageeh HN, et al. miRNA-146a and miRNA-126 as Potential Biomarkers in Patients with Coronary Artery Disease and Generalized Periodontitis. Materials (Basel) 2021; 14(16): 4692.
[http://dx.doi.org/10.3390/ma14164692] [PMID: 34443215]
[103]
Nisha KJ, Janam P, Harshakumar K. Identification of a novel salivary biomarker miR‐143‐3p for periodontal diagnosis: A proof of concept study. J Periodontol 2019; 90(10): 1149-59.
[http://dx.doi.org/10.1002/JPER.18-0729] [PMID: 31021403]
[104]
Stoecklin-Wasmer C, Guarnieri P, Celenti R, Demmer RT, Kebschull M, Papapanou PN. MicroRNAs and their target genes in gingival tissues. J Dent Res 2012; 91(10): 934-40.
[http://dx.doi.org/10.1177/0022034512456551] [PMID: 22879578]
[105]
Byun JS, Lee HY, Tian J, et al. Effect of Salivary Exosomal miR-25-3p on Periodontitis With Insulin Resistance. Front Immunol 2022; 12: 775046.
[http://dx.doi.org/10.3389/fimmu.2021.775046] [PMID: 35069547]
[106]
Marques-Rocha JL, Samblas M, Milagro FI, Bressan J, Martínez JA, Marti A. Noncoding RNAs, cytokines, and inflammation-related diseases. FASEB J 2015; 29(9): 3595-611.
[http://dx.doi.org/10.1096/fj.14-260323] [PMID: 26065857]
[107]
Wu T, Zhou H, Hong Y, Li J, Jiang X, Huang H. miR-30 family members negatively regulate osteoblast differentiation. J Biol Chem 2012; 287(10): 7503-11.
[http://dx.doi.org/10.1074/jbc.M111.292722] [PMID: 22253433]
[108]
Liu X, Yang B, Zhang Y, et al. miR-30a-5p inhibits osteogenesis and promotes periodontitis by targeting Runx2. BMC Oral Health 2021; 21(1): 513.
[http://dx.doi.org/10.1186/s12903-021-01882-9] [PMID: 34635105]
[109]
Costantini E, Sinjari B, Di Giovanni P, et al. TNFα, IL-6, miR-103a-3p, miR-423-5p, miR-23a-3p, miR-15a-5p and miR-223-3p in the crevicular fluid of periodontopathic patients correlate with each other and at different stages of the disease. Sci Rep 2023; 13(1): 126.
[http://dx.doi.org/10.1038/s41598-022-26421-6] [PMID: 36599866]
[110]
Perri R, Nares S, Zhang S, Barros SP, Offenbacher S. MicroRNA modulation in obesity and periodontitis. J Dent Res 2012; 91(1): 33-8.
[http://dx.doi.org/10.1177/0022034511425045] [PMID: 22043006]
[111]
Kang L, Li N, Wang L. The Expression of miR-23a and miR-146a in the Saliva of Patients with Periodontitis and Its Clinical Significance. BioMed Res Int 2021; 2021: 1-8.
[http://dx.doi.org/10.1155/2021/5135278] [PMID: 34888382]
[112]
Wu P, Feng J, Wang W. Expression of miR-155 and miR-146a in the saliva of patients with periodontitis and its clinical value. Am J Transl Res 2021; 13(6): 6670-7.
[PMID: 34306411]
[113]
Ghotloo S, Motedayyen H, Amani D, Saffari M, Sattari M. Assessment of micro RNA ‐146a in generalized aggressive periodontitis and its association with disease severity. J Periodontal Res 2019; 54(1): 27-32.
[http://dx.doi.org/10.1111/jre.12538] [PMID: 30328616]
[114]
Venugopal P, Koshy T, Lavu V, et al. Differential expression of microRNAs let‐7a, miR‐125b, miR‐100, and miR‐21 and interaction with NF‐kB pathway genes in periodontitis pathogenesis. J Cell Physiol 2018; 233(8): 5877-84.
[http://dx.doi.org/10.1002/jcp.26391] [PMID: 29226952]
[115]
Naqvi AR, Brambila MF, Martínez G, Chapa G, Nares S. Dysregulation of human miRNAs and increased prevalence of HHV miRNAs in obese periodontitis subjects. J Clin Periodontol 2019; 46(1): 51-61.
[http://dx.doi.org/10.1111/jcpe.13040] [PMID: 30499589]
[116]
Law YY, Lee WF, Hsu CJ, et al. miR-let-7c-5p and miR-149-5p inhibit proinflammatory cytokine production in osteoarthritis and rheumatoid arthritis synovial fibroblasts. Aging (Albany NY) 2021; 13(13): 17227-36.
[http://dx.doi.org/10.18632/aging.203201] [PMID: 34198264]
[117]
Ghiam S, Eslahchi C, Shahpasand K, Habibi-Rezaei M, Gharaghani S. Exploring the role of non-coding RNAs as potential candidate biomarkers in the cross-talk between diabetes mellitus and Alzheimer’s disease. Front Aging Neurosci 2022; 14: 955461.
[http://dx.doi.org/10.3389/fnagi.2022.955461] [PMID: 36092798]
[118]
Aavik E, Lumivuori H, Leppänen O, et al. Global DNA methylation analysis of human atherosclerotic plaques reveals extensive genomic hypomethylation and reactivation at imprinted locus 14q32 involving induction of a miRNA cluster. Eur Heart J 2015; 36(16): 993-1000.
[http://dx.doi.org/10.1093/eurheartj/ehu437] [PMID: 25411193]
[119]
Yang Y, Ago T, Zhai P, Abdellatif M, Sadoshima J. Thioredoxin 1 negatively regulates angiotensin II-induced cardiac hypertrophy through upregulation of miR-98/let-7. Circ Res 2011; 108(3): 305-13.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.228437] [PMID: 21183740]
[120]
Kazemian S, Ahmadi R, Ferns GA, et al. Correlation of miR-24-3p and miR-595 expression with CCL3, CCL4, IL1-beta, TNFalphaIP3, and NF-kappaBIalpha genes in PBMCs of patients with coronary artery disease. EXCLI J 2022; 21: 1184-95.
[PMID: 36381642]
[121]
Lin SC, Liu CJ, Lin JA, Chiang WF, Hung PS, Chang KW. miR-24 up-regulation in oral carcinoma: Positive association from clinical and in vitro analysis. Oral Oncol 2010; 46(3): 204-8.
[http://dx.doi.org/10.1016/j.oraloncology.2009.12.005] [PMID: 20138800]
[122]
Chen J, Tang Z, Chen Z, et al. MicroRNA-218-5p regulates inflammation response via targeting TLR4 in atherosclerosis. BMC Cardiovasc Disord 2023; 23(1): 122.
[http://dx.doi.org/10.1186/s12872-023-03124-y] [PMID: 36890438]
[123]
Cheng Y, Kuang W, Hao Y, et al. Downregulation of miR-27a* and miR-532-5p and Upregulation of miR-146a and miR-155 in LPS-induced RAW264.7 Macrophage Cells. Inflammation 2012; 35(4): 1308-13.
[http://dx.doi.org/10.1007/s10753-012-9443-8] [PMID: 22415194]
[124]
Liu D, Tang H, Li XY, et al. Targeting the HDAC2/HNF-4A/miR-101b/AMPK Pathway Rescues Tauopathy and Dendritic Abnormalities in Alzheimer’s Disease. Mol Ther 2017; 25(3): 752-64.
[http://dx.doi.org/10.1016/j.ymthe.2017.01.018] [PMID: 28202389]
[125]
Nayar G, Gauna A, Chukkapalli S, Velsko I, Kesavalu L, Cha S. Polymicrobial infection alter inflammatory microRNA in rat salivary glands during periodontal disease. Anaerobe 2016; 38: 70-5.
[http://dx.doi.org/10.1016/j.anaerobe.2015.10.005] [PMID: 26481834]
[126]
Diener C, Keller A, Meese E. Emerging concepts of miRNA therapeutics: from cells to clinic. Trends Genet 2022; 38(6): 613-26.
[http://dx.doi.org/10.1016/j.tig.2022.02.006] [PMID: 35303998]
[127]
Han JY, Reynolds MA. Effect of anti-rheumatic agents on periodontal parameters and biomarkers of inflammation: a systematic review and meta-analysis. J Periodontal Implant Sci 2012; 42(1): 3-12.
[http://dx.doi.org/10.5051/jpis.2012.42.1.3] [PMID: 22413068]
[128]
Tarling EJ, Edwards PA. ATP binding cassette transporter G1 (ABCG1) is an intracellular sterol transporter. Proc Natl Acad Sci USA 2011; 108(49): 19719-24.
[http://dx.doi.org/10.1073/pnas.1113021108] [PMID: 22095132]
[129]
Oram JF, Lawn RM. ABCA1: the gatekeeper for eliminating excess tissue cholesterol. J Lipid Res 2001; 42(8): 1173-9.
[http://dx.doi.org/10.1016/S0022-2275(20)31566-2] [PMID: 11483617]
[130]
Li X, Ji Z, Li S, et al. miR-146a-5p Antagonized AGEs- and P.g-LPS-Induced ABCA1 and ABCG1 Dysregulation in Macrophages via IRAK-1 Downregulation. Inflammation 2015; 38(5): 1761-8.
[http://dx.doi.org/10.1007/s10753-015-0153-x] [PMID: 25805648]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy