Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Review Article

Quercetin in Oncology: A Phytochemical with Immense Therapeutic Potential

Author(s): Raj Kamal, Priyanka Paul, Shubham Thakur, Sachin Kumar Singh and Ankit Awasthi*

Volume 25, Issue 11, 2024

Published on: 10 July, 2024

Page: [740 - 751] Pages: 12

DOI: 10.2174/0113894501292466240627050638

Price: $65

conference banner
Abstract

Quercetin is a natural flavonoid with various pharmacological actions such as anti-inflammatory, antioxidant, antimicrobial, anticancer, antiviral, antidiabetic, cardioprotective, neuroprotective, and antiviral activities. Looking at these enormous potentials, researchers have explored how they can be used to manage numerous cancers. It's been studied for cancer management due to its anti-angiogenesis, anti-metastatic, and antiproliferative mechanisms. Despite having these proven pharmacological activities, the clinical use of quercetin is limited due to its first-- pass metabolism, poor solubility, and bioavailability. To address these shortcomings, researchers have fabricated various nanocarriers-based formulations to fight cancer. The present review overshadows the pharmacological potential, mechanisms, and application of nanoformulations against different cancers.

Teaser: Explore the potential of Quercetin, a natural flavonoid with diverse pharmacological activities, and its nanoformulations in managing various cancers.

Keywords: Quercetin, pharmacotherapeutic activities, anticancer activities, nanoformulations, clinical trials, medicinal plants.

Graphical Abstract
[1]
Rajput A. Cancer: A sui generis threat and its global impact.Biosensor Based Advanced Cancer Diagnostics. Cambridge, Massachusetts: Academic Press 2022; pp. 1-25.
[http://dx.doi.org/10.1016/B978-0-12-823424-2.00019-3]
[2]
Kumar M, Kulkarni AJ, Satapathy SC. A hybridized data clustering for breast cancer prognosis and risk exposure using fuzzy c-means and cohort intelligence.Optimization in Machine Learning and Applications. Singapore: Springer Singapore 2020; pp. 113-26.
[http://dx.doi.org/10.1007/978-981-15-0994-0_7]
[3]
Patel A. Benign vs Malignant tumors. JAMA Oncol 2020; 6(9): 1488-8.
[http://dx.doi.org/10.1001/jamaoncol.2020.2592] [PMID: 32729930]
[4]
[5]
Schirrmacher V. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review). Int J Oncol 2018; 54(2): 407-19.
[http://dx.doi.org/10.3892/ijo.2018.4661] [PMID: 30570109]
[6]
Tang SM, Deng XT, Zhou J, Li QP, Ge XX, Miao L. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomed Pharmacother 2020; 121: 109604.
[http://dx.doi.org/10.1016/j.biopha.2019.109604] [PMID: 31733570]
[7]
Deepika , Maurya PK. Health benefits of quercetin in age-related diseases. Molecules 2022; 27(8): 2498.
[http://dx.doi.org/10.3390/molecules27082498] [PMID: 35458696]
[8]
Jan R, Khan M, Asaf S, Lubna , Asif S, Kim KM. Bioactivity and therapeutic potential of kaempferol and quercetin: new insights for plant and human health. Plants 2022; 11(19): 2623.
[http://dx.doi.org/10.3390/plants11192623] [PMID: 36235488]
[9]
Tu H, Ma D, Luo Y, et al. Quercetin alleviates chronic renal failure by targeting the PI3k/Akt pathway. Bioengineered 2021; 12(1): 6538-58.
[http://dx.doi.org/10.1080/21655979.2021.1973877] [PMID: 34528858]
[10]
Xiang T, Fang Y, Wang S. Quercetin suppresses HeLa cells by blocking PI3K/Akt pathway. J Huazhong Univ Sci Technolog Med Sci 2014; 34(5): 740-4.
[http://dx.doi.org/10.1007/s11596-014-1345-6] [PMID: 25318886]
[11]
Wang W, Yuan X, Mu J, et al. Quercetin induces MGMT+ glioblastoma cells apoptosis via dual inhibition of Wnt3a/β-Catenin and Akt/NF-κB signaling pathways. Phytomedicine 2023; 118: 154933.
[http://dx.doi.org/10.1016/j.phymed.2023.154933] [PMID: 37451151]
[12]
Srinivasan A, Thangavel C, Liu Y, et al. Quercetin regulates β-catenin signaling and reduces the migration of triple negative breast cancer. Mol Carcinog 2016; 55(5): 743-56.
[http://dx.doi.org/10.1002/mc.22318] [PMID: 25968914]
[13]
Jing D, Wu W, Chen X, et al. Quercetin encapsulated in folic acid-modified liposomes is therapeutic against osteosarcoma by non-covalent binding to the JH2 domain of JAK2 via the JAK2-STAT3-PDL1. Pharmacol Res 2022; 182: 106287.
[http://dx.doi.org/10.1016/j.phrs.2022.106287] [PMID: 35671921]
[14]
Wang D, Ali F, Liu H, et al. Quercetin inhibits angiotensin II-induced vascular smooth muscle cell proliferation and activation of JAK2/STAT3 pathway: A target based networking pharmacology approach. Front Pharmacol 2022; 13: 1002363.
[http://dx.doi.org/10.3389/fphar.2022.1002363] [PMID: 36324691]
[15]
Wang X, Xue X, Wang H, et al. Quercetin inhibits human microvascular endothelial cells viability, migration and tube-formation in vitro through restraining microRNA-216a. J Drug Target 2020; 28(6): 609-16.
[http://dx.doi.org/10.1080/1061186X.2019.1700263] [PMID: 31791158]
[16]
Igbe I, Shen XF, Jiao W, et al. Dietary quercetin potentiates the antiproliferative effect of interferon-α in hepatocellular carcinoma cells through activation of JAK/STAT pathway signaling by inhibition of SHP2 phosphatase. Oncotarget 2017; 8(69): 113734-48.
[http://dx.doi.org/10.18632/oncotarget.22556] [PMID: 29371942]
[17]
Senggunprai L, Kukongviriyapan V, Prawan A, Kukongviriyapan U. Quercetin and EGCG exhibit chemopreventive effects in cholangiocarcinoma cellsvia suppression of JAK/STAT signaling pathway. Phytother Res 2014; 28(6): 841-8.
[http://dx.doi.org/10.1002/ptr.5061] [PMID: 24038588]
[18]
Chen X, Xu P, Zhang H, et al. EGFR and ERK activation resists flavonoid quercetin-induced anticancer activities in human cervical cancer cells in vitro. Oncol Lett 2021; 22(5): 754.
[http://dx.doi.org/10.3892/ol.2021.13015] [PMID: 34539858]
[19]
Kim SH, Yoo ES, Woo JS, et al. Antitumor and apoptotic effects of quercetin on human melanoma cells involving JNK/P38 MAPK signaling activation. Eur J Pharmacol 2019; 860: 172568.
[http://dx.doi.org/10.1016/j.ejphar.2019.172568] [PMID: 31348906]
[20]
Erdogan S, Turkekul K, Dibirdik I, et al. Midkine downregulation increases the efficacy of quercetin on prostate cancer stem cell survival and migration through PI3K/AKT and MAPK/ERK pathway. Biomed Pharmacother 2018; 107: 793-805.
[http://dx.doi.org/10.1016/j.biopha.2018.08.061] [PMID: 30142541]
[21]
Liu L, Liu Y, Cheng X, Qiao X. The alleviative effects of quercetin on cadmium-induced necroptosis via inhibition ROS/iNOS/NF-κB pathway in the chicken brain. Biol Trace Elem Res 2021; 199(4): 1584-94.
[http://dx.doi.org/10.1007/s12011-020-02563-4] [PMID: 33398654]
[22]
Ahmadi M, Valizadeh A, Bazavar M, Yousefi B. Investigating the role of quercetin in increasing the rate of cisplatin-induced apoptosis via the NF-κB pathway in MG-63 cancer cells. Drug Res 2022; 72(7): 385-9.
[http://dx.doi.org/10.1055/a-1842-7424] [PMID: 35785813]
[23]
Qi X, Gao C, Yin C, et al. Development of quercetin-loaded PVCL–PVA–PEG micelles and application in inhibiting tumor angiogenesis through the PI3K/Akt/VEGF pathway. Toxicol Appl Pharmacol 2022; 437: 115889.
[http://dx.doi.org/10.1016/j.taap.2022.115889] [PMID: 35065992]
[24]
Chrzanowska-Wodnicka M, Kraus AE, Gale D, White GC II, VanSluys J. Defective angiogenesis, endothelial migration, proliferation, and MAPK signaling in Rap1b-deficient mice. Blood 2008; 111(5): 2647-56.
[http://dx.doi.org/10.1182/blood-2007-08-109710] [PMID: 17993608]
[25]
Li Y, Wang Z, Jin J, et al. Quercetin pretreatment enhances the radiosensitivity of colon cancer cells by targeting Notch-1 pathway. Biochem Biophys Res Commun 2020; 523(4): 947-53.
[http://dx.doi.org/10.1016/j.bbrc.2020.01.048] [PMID: 31964531]
[26]
Glaviano A, Foo ASC, Lam HY, et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol Cancer 2023; 22(1): 138.
[http://dx.doi.org/10.1186/s12943-023-01827-6] [PMID: 37596643]
[27]
Bahar ME, Kim HJ, Kim DR. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Signal Transduct Target Ther 2023; 8(1): 455.
[http://dx.doi.org/10.1038/s41392-023-01705-z] [PMID: 38105263]
[28]
Samatha Jain M. Therapeutic strategies targeting Wnt/β-catenin signaling pathway in stem cells for ROS-induced cancer progression.Handbook of Oxidative Stress in Cancer: Therapeutic Aspects. Singapore: Springer Singapore 2021; pp. 1-19.
[29]
Jakowlew SB. Transforming growth factor-β in cancer and metastasis. Cancer Metastasis Rev 2006; 25(3): 435-57.
[http://dx.doi.org/10.1007/s10555-006-9006-2] [PMID: 16951986]
[30]
Yayan J, Franke KJ, Berger M, Windisch W, Rasche K. Adhesion, metastasis, and inhibition of cancer cells: a comprehensive review. Mol Biol Rep 2024; 51(1): 165.
[http://dx.doi.org/10.1007/s11033-023-08920-5] [PMID: 38252369]
[31]
Shivani . Quercetin-based nanoformulation: A potential approach for cancer treatment. Anticancer Agents Med Chem 2023; 23(18): 1983-2007.
[http://dx.doi.org/10.2174/1871520623666230817101926]
[32]
Elsayed AM, Sherif NM, Hassan NS, Althobaiti F, Hanafy NAN, Sahyon HA. Novel quercetin encapsulated chitosan functionalized copper oxide nanoparticles as anti-breast cancer agent via regulating p53 in rat model. Int J Biol Macromol 2021; 185: 134-52.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.06.085] [PMID: 34147524]
[33]
Li X, Zhou N, Wang J, et al. Quercetin suppresses breast cancer stem cells (CD44 + /CD24 ) by inhibiting the PI3K/Akt/mTOR-signaling pathway. Life Sci 2018; 196: 56-62.
[http://dx.doi.org/10.1016/j.lfs.2018.01.014] [PMID: 29355544]
[34]
Przybylski P, Lewińska A, Rzeszutek I, et al. Mutation status and glucose availability affect the response to mitochondria-targeted quercetin derivative in breast cancer cells. Cancers 2023; 15(23): 5614.
[http://dx.doi.org/10.3390/cancers15235614] [PMID: 38067318]
[35]
Tang H, Kuang Y, Wu W, Peng B, Fu Q. Quercetin inhibits the metabolism of arachidonic acid by inhibiting the activity of CYP3A4, thereby inhibiting the progression of breast cancer. Mol Med 2023; 29(1): 127.
[http://dx.doi.org/10.1186/s10020-023-00720-8] [PMID: 37710176]
[36]
Alhakamy NA. Scorpion venom-functionalized quercetin phytosomes for breast cancer management: in vitro response surface optimization and anticancer activity against MCF-7 cells. Polymers 2021; 27(1): 93.
[http://dx.doi.org/10.3390/polym14010093]
[37]
Tang Y, Zhang L, Sun R, et al. Pulmonary delivery of mucus-traversing PF127-modified silk fibroin nanoparticles loading with quercetin for lung cancer therapy. Asian J Pharmaceut Sci 2023; 18(4): 100833.
[http://dx.doi.org/10.1016/j.ajps.2023.100833] [PMID: 37635802]
[38]
Ganthala PD, Alavala S, Chella N, Andugulapati SB, Bathini NB, Sistla R. Co-encapsulated nanoparticles of Erlotinib and Quercetin for targeting lung cancer through nuclear EGFR and PI3K/AKT inhibition. Colloids Surf B Biointerfaces 2022; 211: 112305.
[http://dx.doi.org/10.1016/j.colsurfb.2021.112305] [PMID: 34998178]
[39]
Wang Y, Yu H, Wang S, et al. Targeted delivery of quercetin by nanoparticles based on chitosan sensitizing paclitaxel-resistant lung cancer cells to paclitaxel. Mater Sci Eng C 2021; 119: 111442.
[http://dx.doi.org/10.1016/j.msec.2020.111442] [PMID: 33321583]
[40]
Loo CY, Traini D, Young PM, Parumasivam T, Lee W-H. Pulmonary delivery of curcumin and quercetin nanoparticles for lung cancer – Part 2: Toxicity and endocytosis. J Drug Deliv Sci Technol 2023; 82: 104375.
[http://dx.doi.org/10.1016/j.jddst.2023.104375]
[41]
Ren KW, Li YH, Wu G, et al. Quercetin nanoparticles display antitumor activity via proliferation inhibition and apoptosis induction in liver cancer cells. Int J Oncol 2017; 50(4): 1299-311.
[http://dx.doi.org/10.3892/ijo.2017.3886] [PMID: 28259895]
[42]
Haroun AM, El-Sayed WM, Hassan RE. Quercetin and l-arginine ameliorated the deleterious effects of copper oxide nanoparticles on the liver of mice through anti-inflammatory and anti-apoptotic pathways. Biol Trace Elem Res 2023.
[PMID: 37775700]
[43]
Asl AM, Kalaee M, Abdouss M, Homami SS. Novel targeted delivery of quercetin for human hepatocellular carcinoma using starch/polyvinyl alcohol nanocarriers based hydrogel containing Fe2O3 nanoparticles. Int J Biol Macromol 2024; 257(Pt 2): 128626.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.128626] [PMID: 38056757]
[44]
Enin HAA, Alquthami AF, Alwagdani AM, et al. Utilizing TPGS for optimizing quercetin nanoemulsion for colon cancer cells inhibition. Colloids and Interfaces 2022; 6(3): 49.
[http://dx.doi.org/10.3390/colloids6030049]
[45]
Patil P, Killedar S. Formulation and characterization of gallic acid and quercetin chitosan nanoparticles for sustained release in treating colorectal cancer. J Drug Deliv Sci Technol 2021; 63: 102523.
[http://dx.doi.org/10.1016/j.jddst.2021.102523]
[46]
Al-Samydai A, Al Qaraleh M, Al Azzam KM, et al. Formulating co-loaded nanoliposomes with gallic acid and quercetin for enhanced cancer therapy. Heliyon 2023; 9(6): e17267.
[http://dx.doi.org/10.1016/j.heliyon.2023.e17267] [PMID: 37408902]
[47]
Das S, Saha M, Mahata LC, China A, Chatterjee N, Das Saha K. Quercetin and 5-Fu loaded chitosan nanoparticles trigger cell-cycle arrest and induce apoptosis in HCT116 cells via modulation of the p53/p21 axis. ACS Omega 2023; 8(40): 36893-905.
[http://dx.doi.org/10.1021/acsomega.3c03933] [PMID: 37841142]
[48]
Li SF, Hu TG, Wu H. Fabrication of colon-targeted ethyl cellulose/gelatin hybrid nanofibers: Regulation of quercetin release and its anticancer activity. Int J Biol Macromol 2023; 253(Pt 6): 127175.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.127175] [PMID: 37783248]
[49]
Colpan RD, Erdemir A. Co-delivery of quercetin and caffeic-acid phenethyl ester by polymeric nanoparticles for improved antitumor efficacy in colon cancer cells. J Microencapsul 2021; 38(6): 381-93.
[http://dx.doi.org/10.1080/02652048.2021.1948623] [PMID: 34189998]
[50]
Shitole AA, Sharma N, Giram P, et al. LHRH-conjugated, PEGylated, poly-lactide-co-glycolide nanocapsules for targeted delivery of combinational chemotherapeutic drugs Docetaxel and Quercetin for prostate cancer. Mater Sci Eng C 2020; 114: 111035.
[http://dx.doi.org/10.1016/j.msec.2020.111035] [PMID: 32994029]
[51]
Mousavi N, Rahimi S, Emami H, Kazemi AH, Mohammad Taghi Kashi R, Heidarian R. The effect of quercetin nanosuspension on prostate cancer cell line LNCaP via Hedgehog Signaling Pathway. Rep Biochem Mol Biol 2021; 10(1): 69-75.
[http://dx.doi.org/10.52547/rbmb.10.1.69] [PMID: 34277870]
[52]
yaghoubi , Hosseini Motlagh NS, moradi , Haghiralsadat . Carboxylated graphene oxide as a nanocarrier for drug delivery of quercetin as an effective anticancer agent. Iran Biomed J 2022; 26(4): 324-9.
[http://dx.doi.org/10.52547/ibj.3598] [PMID: 36000200]
[53]
Essa D, Kondiah PPD, Kumar P, Choonara YE. Design of Chitosan-Coated, Quercetin-Loaded PLGA Nanoparticles for Enhanced PSMA-Specific Activity on LnCap Prostate Cancer Cells. Biomedicines 2023; 11(4): 1201.
[http://dx.doi.org/10.3390/biomedicines11041201] [PMID: 37189819]
[54]
Chekuri S. Isolation and anticancer activity of quercetin from Acalypha indica L. against breast cancer cell lines MCF-7 and MDA-MB-231. 3 Biotech 2023; 13(8): 289.
[55]
Karimian A, Majidinia M, Moliani A, et al. The modulatory effects of two bioflavonoids, quercetin and thymoquinone on the expression levels of DNA damage and repair genes in human breast, lung and prostate cancer cell lines. Pathol Res Pract 2022; 240: 154143.
[http://dx.doi.org/10.1016/j.prp.2022.154143] [PMID: 36347210]
[56]
Manni A, Sun YW, Schell TD, et al. Complementarity between microbiome and immunity may account for the potentiating effect of quercetin on the antitumor action of cyclophosphamide in a triple-negative breast cancer model. Pharmaceuticals 2023; 16(10): 1422.
[http://dx.doi.org/10.3390/ph16101422] [PMID: 37895893]
[57]
Sannappa Gowda NG, Shiragannavar VD, Puttahanumantharayappa LD, et al. Quercetin activates vitamin D receptor and ameliorates breast cancer induced hepatic inflammation and fibrosis. Front Nutr 2023; 10: 1158633.
[http://dx.doi.org/10.3389/fnut.2023.1158633] [PMID: 37153919]
[58]
Zhou B, Yang Y, Pang X, Shi J, Jiang T, Zheng X. Quercetin inhibits DNA damage responses to induce apoptosis via SIRT5/PI3K/AKT pathway in non-small cell lung cancer. Biomed Pharmacother 2023; 165: 115071.
[http://dx.doi.org/10.1016/j.biopha.2023.115071] [PMID: 37390710]
[59]
Ballav S, Ranjan A, Basu S. Partial activation of PPAR- γ by synthesized quercetin derivatives modulates TGF- β 1-induced EMT in lung cancer cells. Adv Biol 2023; 7(10): 2300037.
[http://dx.doi.org/10.1002/adbi.202300037]
[60]
Zhang M, Lu A, Wang H, Yang J. Quercetin downregulates the expression of IL15 in cancer cells through DNA methylation. Eur Rev Med Pharmacol Sci 2023; 27(6): 2580-90.
[PMID: 37013776]
[61]
Tang Z, Wang L, Chen Y, et al. Quercetin reverses 5-fluorouracil resistance in colon cancer cells by modulating the NRF2/HO-1 pathway. Eur J Histochem 2023; 67(3): 3719.
[http://dx.doi.org/10.4081/ejh.2023.3719] [PMID: 37548240]
[62]
Heydari S. The effect of 8 weeks of quercetin supplementation and intermittent exercise on gene expression of Muc5Ac, Muc4 and polyphosphate in rats with colon cancer. Sport Sci Health Res 2023; 15(1): 13-22.
[63]
Elmowafy M, Shalaby K, Elkomy MH, et al. Exploring the potential of quercetin/aspirin-loaded chitosan nanoparticles coated with Eudragit L100 in the treatment of induced-colorectal cancer in rats. Drug Deliv Transl Res 2023; 13(10): 2568-88.
[http://dx.doi.org/10.1007/s13346-023-01338-3] [PMID: 37000409]
[64]
Russo M, Moccia S, Luongo D, Russo GL. Senolytic Flavonoids enhance type-I and type-II Cell death in human radioresistant colon cancer cells through AMPK/MAPK pathway. Cancers 2023; 15(9): 2660.
[http://dx.doi.org/10.3390/cancers15092660] [PMID: 37174126]
[65]
Fu W, Xu L, Chen Y, et al. Based on network pharmacology-quercetin, a component of fuzheng yiliu decoction suppressed prostate cancer by regulating PI3K/AKT pathway. Andrologia 2023; 2023: 1-17.
[http://dx.doi.org/10.1155/2023/1445953]
[66]
Ning Y. The effect of quercetin in the yishen tongluo jiedu recipe on the development of prostate cancer through the akt1-related CXCL12/CXCR4 pathway. Comb Chem High Throughput Screen 2023.
[PMID: 37259219]
[67]
Hao Q, Henning SM, Magyar CE, et al. Enhanced chemoprevention of prostate cancer by combining arctigenin with green tea and quercetin in prostate-specific phosphatase and tensin homolog knockout mice. Biomolecules 2024; 14(1): 105.
[http://dx.doi.org/10.3390/biom14010105] [PMID: 38254705]
[68]
Mirzaei A, Deyhimfar R, Azodian Ghajar H, et al. Quercetin can be a more reliable treatment for metastatic prostate cancer than the localized disease: An in vitro study. J Cell Mol Med 2023; 27(12): 1725-34.
[http://dx.doi.org/10.1111/jcmm.17783] [PMID: 37232542]
[69]
Hu M, Song H, Chen L. Quercetin acts via the G3BP1/YWHAZ axis to inhibit glycolysis and proliferation in oral squamous cell carcinoma. Toxicol Mech Methods 2023; 33(2): 141-50.
[http://dx.doi.org/10.1080/15376516.2022.2103480] [PMID: 35945655]
[70]
Gao Y, Li C, Xue T, et al. Quercetin mediated TET1 expression through MicroRNA-17 induced cell apoptosis in melanoma cells. Biochem Genet 2023; 61(2): 762-77.
[http://dx.doi.org/10.1007/s10528-022-10286-5] [PMID: 36136257]
[71]
Rocha-Brito KJP. Quercetin increases mitochondrial proteins (VDAC and SDH) and downmodulates AXL and PIM-1 tyrosine kinase receptors in NRAS melanoma cells. Biol Chem 2021; 403(3): 0261.
[72]
Liu W, Chen D, Su J, et al. Quercetin induced HepG2 cells apoptosis through ATM/JNK/STAT3 signaling pathways. Biocell 2023; 47(1): 187-94.
[http://dx.doi.org/10.32604/biocell.2022.023030]
[73]
Guan H, Zhang W, Liu H, et al. Quercetin induces apoptosis in HepG2 cells via directly interacting with YY1 to disrupt YY1-p53 interaction. Metabolites 2023; 13(2): 229.
[http://dx.doi.org/10.3390/metabo13020229] [PMID: 36837850]
[74]
Aslani F, Afarin R, Dehghani Madiseh N, et al. Potentiation of apoptotic effect of combination of etoposide and quercetin on HepG2 liver cancer cells. Hepat Mon 2023; 23(1): e136194.
[http://dx.doi.org/10.5812/hepatmon-136194]
[75]
Yisha T. Study on the anti-tumor effects of the key component of traditional Chinese medicine nightshade in the treatment of human gastric cancer (SGC7901 cell line). 2023. Available From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12603/126030K/Study-on-the-anti-tumor-effects-of-the-key-component/10.1117/12.2673679.full#_=_
[76]
Chen M, Duan C, Pan J. Quercetin increases doxorubicin-induced apoptosis through oxidative DNA damage in KATO III gastric cancer cells. Iran Red Crescent Med J 2021; 23(4)
[77]
Chan CY, Hong SC, Chang CM, Chen YH, Liao PC, Huang CY. Oral squamous cell carcinoma cells with acquired resistance to erlotinib are sensitive to anti-cancer effect of quercetin via pyruvate kinase M2 (PKM2). Cells 2023; 12(1): 179.
[http://dx.doi.org/10.3390/cells12010179] [PMID: 36611972]
[78]
Son HK, Kim D. Quercetin induces cell cycle arrest and apoptosis in YD10B and YD38 oral squamous cell carcinoma cells. Asian Pac J Cancer Prev 2023; 24(1): 283-9.
[http://dx.doi.org/10.31557/APJCP.2023.24.1.283] [PMID: 36708578]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy