Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Mini-Review Article

A Review on Environment-friendly Protocol for the Synthesis of Pyrazole Derivative

Author(s): Nitesh Kumar, Sejal Rajput, Ridham Patel, Ashesha Yadav and Shanta Raj Lakshmi*

Volume 11, Issue 4, 2024

Published on: 09 July, 2024

Page: [336 - 350] Pages: 15

DOI: 10.2174/0122133461316393240708085115

Price: $65

conference banner
Abstract

Pyrazole derivatives are a significant group of heterocyclic compounds that have a diverse variety of biological activities and are used in several fields, such as medicines, agrochemicals, and materials research. Conventional methods for synthesizing pyrazole derivatives typically require severe reaction conditions, hazardous reagents, and environmentally harmful solvents, presenting considerable obstacles to achieving sustainable chemistry. This analysis specifically examines the latest progress made in creating environmentally friendly procedures for producing pyrazole derivatives. The study investigates different strategies in green chemistry, such as reactions without solvents, techniques including microwave and ultrasonic assistance, and using renewable resources and environmentally friendly catalysts. An in-depth analysis is conducted to evaluate the efficiency, selectivity, and environmental impact of these approaches. This review intends to comprehensively explore the potential for sustainable practices in synthesizing pyrazole derivatives by emphasizing advancements in green synthetic methods. It seeks to encourage further research and use of green chemistry concepts in heterocyclic chemistry.

Keywords: Green chemistry, pyrazole, environment-friendly, microwave, ultrasonic, sustainability.

Graphical Abstract
[1]
da Silva, G.P.; Ali, A.; da Silva, R.C.; Jiang, H.; Paixão, M.W. Tris(trimethylsilyl)silane and visible-light irradiation: A new metal and additive-free photochemical process for the synthesis of indoles and oxindoles. Chem. Commun., 2015, 51(82), 15110-15113.
[http://dx.doi.org/10.1039/C5CC06329A] [PMID: 26324353]
[2]
Silva, T.F.S.; Leod, T.O.C.M.; Martins, L.M.D.R.S.; Guedes da Silva, M.F.C.; Schiavon, M.A. A short review on pyrazole derivatives and their applications. Mol. Cat. A: Chem., 2013, 367, 52-60.
[3]
Lima, C.G.; Ali, A.; van Berkel, S.S.; Westermann, B.; Paixão, M.W. Emerging approaches for the synthesis of triazoles: Beyond metal-catalyzed and strain-promoted azide–alkyne cycloaddition. Chemical Commun., 2015, 51(54), 10784-10796.
[4]
Ali, A.; Corrêa, A.G.; Alves, D.; Zukerman-Schpector, J.; Westermann, B.; Ferreira, M.A.B.; Paixão, M.W. An efficient one-pot strategy for the highly regioselective metal-free synthesis of 1,4-disubstituted-1,2,3-triazoles. Chem. Commun. (Camb.), 2014, 50(80), 11926-11929.
[http://dx.doi.org/10.1039/C4CC04678A] [PMID: 25157576]
[5]
Singh, K.; Kumar, Y.; Puri, P.; Kumar, M. Cobalt, nickel, copper and zinc complexes with 1,3-diphenyl-1H-pyrazole-4-carboxaldehyde Schiff bases: Antimicrobial, spectroscopic, thermal and fluorescence studies. Eur. J. Med. Chem., 2012, 52, 313-321.
[6]
Anastasa, P.T.; Beacha Anastasa, E.S. Green chemistry: The emergence of a transformative framework. Green Chem. Lett. Rev., 2007, 1, 9-24.
[http://dx.doi.org/10.1080/17518250701882441]
[7]
Villar, H.; Frings, M.; Bolm, C. Ring closing enyne metathesis: A powerful tool for the synthesis of heterocycles. Chem. Soc. Rev., 2007, 36(1), 55-66.
[http://dx.doi.org/10.1039/B508899M] [PMID: 17173145]
[8]
Gu, Y. Multicomponent reactions in unconventional solvents: State of the art. Green Chem., 2012, 14(8), 2091.
[http://dx.doi.org/10.1039/c2gc35635j]
[9]
Trost, B.M. On inventing reactions for atom economy. Acc. Chem. Res., 2002, 35(9), 695-705.
[http://dx.doi.org/10.1021/ar010068z] [PMID: 12234199]
[10]
Cho, H.Y.; Morken, J.P. Catalytic bismetallative multicomponent coupling reactions: Scope, applications, and mechanisms. Chem. Soc. Rev., 2014, 43(13), 4368-4380.
[http://dx.doi.org/10.1039/C3CS60482A] [PMID: 24736839]
[11]
Duvauchelle, V.; Meffre, P. Green methodologies for the synthesis of 2-aminothiophene. Z. Environ. Chem. Lett., 2023, 21, 597.
[http://dx.doi.org/10.1007/s10311-022-01482-1]
[12]
Terrett, N.K.; Bell, A.S.; Brown, D.; Ellis, P. Sildenafil (VIAGRATM), a potent and selective inhibitor of type 5 cGMP phosphodiesterase with utility for the treatment of male erectile dysfunction. Bioorg. Med. Chem. Lett., 1996, 6(15), 1819-1824.
[http://dx.doi.org/10.1016/0960-894X(96)00323-X]
[13]
Pfefferkorn, J.A.; Choi, C.; Larsen, S.D.; Auerbach, B.; Hutchings, R.; Park, W.; Askew, V.; Dillon, L.; Hanselman, J.C.; Lin, Z.; Lu, G.H.; Robertson, A.; Sekerke, C.; Harris, M.S.; Pavlovsky, A.; Bainbridge, G.; Caspers, N.; Kowala, M.; Tait, B.D. Substituted pyrazoles as hepatoselective HMG-CoA reductase inhibitors: Discovery of (3R,5R)-7-[2-(4-fluoro-phenyl)-4-isopropyl-5-(4-methyl-benzylcarbamoyl)-2H-pyrazol-3-yl]-3,5-dihydroxyheptanoic acid (PF-3052334) as a candidate for the treatment of hypercholesterolemia. J. Med. Chem., 2008, 51(1), 31-45.
[http://dx.doi.org/10.1021/jm070849r] [PMID: 18072721]
[14]
Catalan, J.; Fabero, F.; Claramunt, R.M.; Santa Maria, M.D.; Foces-Foces, M.C.; Hernandez Cano, F.; Martinez-Ripoll, M.; Elguero, J.; Sastre, R. New ultraviolet stabilizers: 3- and 5-(2′-hydroxyphenyl)pyrazoles. J. Am. Chem. Soc., 1992, 114(13), 5039-5048.
[http://dx.doi.org/10.1021/ja00039a014]
[15]
Tominaga, Y.; Matsuoka, Y.; Oniyama, Y.; Uchimura, Y.; Komiya, H.; Hirayama, M.; Kohra, S.; Hosomi, A. Polarized ethylenes. IV. Synthesis of polarized ethylenes using thioamides and methyl dithiocarboxylates and their application to syntheses of pyrazoles,] pyrimidines, pyrazolo[3,4‐d]pyrimidines, and 5‐aza[2.2.3]cyclazines. J. Heterocycl. Chem., 1990, 27(3), 647-660.
[http://dx.doi.org/10.1002/jhet.5570270332]
[16]
Towne, E.B.; Moore, W.H.; Dickey, J.B. US Pat., 3.336.285, 15.8.1967, (Eastman Kodak Co.). Chem. Abstr., 1967, 68, 14072r.
[17]
Fardood, S.T.; Ramazani, A.; Moradi, S. Green synthesis of Ni–Cu–Mg ferrite nanoparticles using tragacanth gum and their use as an efficient catalyst for the synthesis of polyhydroquinoline derivatives. J. Sol-Gel Sci. Technol., 2017, 82(2), 432-439.
[http://dx.doi.org/10.1007/s10971-017-4310-6]
[18]
Polshettiwar, V.; Varma, R.S. Green chemistry by nano-catalysis. Green Chem., 2010, 12(5), 743.
[http://dx.doi.org/10.1039/b921171c]
[19]
Kiyani, H.; Bamdad, M. Sodium ascorbate as an expedient catalyst for green synthesis of polysubstituted 5-aminopyrazole-4-carbonitriles and 6-amino-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles. Res. Chem. Intermed., 2018, 44(4), 2761-2778.
[http://dx.doi.org/10.1007/s11164-018-3260-0]
[20]
Bekhit, A.A.; Hymete, A.; Bekhit, A.A.; Damtew, A.; Aboul-Enein, H.Y. Pyrazoles as promising scaffold for the synthesis of anti-inflammatory and/or antimicrobial agent: A review. Med. Chem., 2010, 10, 1014-1033.
[21]
Jukic, M.; Djakovic, S.; Filipovic-Kovacevic, Z.; Kovac, V.; Vorkapic-Furac, J. The "green" chemistry opens up the path ecologically acceptable chemical processes. Kem. Ind., 2005, 54, 217-224.
[22]
Margetić, D. Mechanochemical N-alkylation of imides. Kem. Ind., 2005, 54, 351-35.
[23]
Nikam, M.D.; Mahajan, P.; Chate, A.; Dabhade, S.; Gill, C. An efficient and green protocol for the synthesis of dihydropyrano [2,3-c] pyrazoles in aqueous medium using thiamine hydrochloride as a catalyst. J. Chil. Chem. Soc., 2015, 60(1), 2847-2850.
[http://dx.doi.org/10.4067/S0717-97072015000100016]
[24]
Soltanzadeh, Z.; Imanzadeh, G.; Noroozi-Pesyan, N.; Şahin, E. Green synthesis of pyrazole systems under solvent-free conditions. Green Chem. Lett. Rev., 2017, 10(3), 148-153.
[http://dx.doi.org/10.1080/17518253.2017.1330428]
[25]
Ghasemzadeh, M.A.; Mirhosseini-Eshkevari, B.; Abdollahi-Basir, M.H. Green synthesis of spiro[indoline-3,4′-pyrano[2,3-c]pyrazoles] using Fe3O4@l-arginine as a robust and reusable catalyst. BMC Chem., 2019, 13(1), 119.
[http://dx.doi.org/10.1186/s13065-019-0636-1] [PMID: 31624802]
[26]
Ameziane El Hassani, I.; Rouzi, K.; Assila, H.; Karrouchi, K.; Ansar, M. Recent advances in the synthesis of pyrazole derivatives: A review. Reactions, 2023, 4(3), 478-504.
[http://dx.doi.org/10.3390/reactions4030029]
[27]
Pundeer, R.; Singh, S.; Yadav, S.; Minakshi, M. Green synthesis of pyrazoles: Recent developments in aqueous methods. SynOpen, 2023, 7(3), 297-312.
[http://dx.doi.org/10.1055/a-2123-8102]
[28]
Nitulescu, G.M.; Matei, L.; Aldea, I.M.; Draghici, C.; Olaru, O.T.; Bleotu, C. Ultrasound-assisted synthesis and anticancer evaluation of new pyrazole derivatives as cell cycle inhibitors., Arabian J. Chem., 2019, 12(6), 816-824.
[http://dx.doi.org/10.1016/j.arabjc.2015.12.006]
[29]
Machado, P.; Lima, G.R.; Rotta, M.; Bonacorso, H.G.; Zanatta, N.; Martins, M.A.P. Efficient and highly regioselective synthesis of ethyl 1-(2,4-dichlorophenyl)-1H-pyrazole-3-carboxylates under ultrasound irradiation. Ultrason. Sonochem., 2011, 18(1), 293-299.
[http://dx.doi.org/10.1016/j.ultsonch.2010.06.009] [PMID: 20638886]
[30]
Saleh, T.S.; Abd EL-Rahman, N.M. Ultrasound promoted synthesis of substituted pyrazoles and isoxazoles containing sulphone moiety. Ultrason. Sonochem., 2009, 16(2), 237-242.
[http://dx.doi.org/10.1016/j.ultsonch.2008.07.012] [PMID: 18835210]
[31]
Ghareb, N. Novel pyrazoles and pyrazolo[1,2-a]pyridazines as selective COX-2 inhibitors; Ultrasound-assisted synthesis, biological evaluation, and DFT calculations. Bioorg. Medic. Chem. Lett., 2017, 27(11), 2377-2383.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.020]
[32]
Longhi, K.; Moreira, D.N.; Marzari, M.R.B.; Floss, V.M.; Bonacorso, H.G.; Zanatta, N.; Martins, M.A.P. An efficient solvent-free synthesis of NH-pyrazoles from β-dimethylaminovinylketones and hydrazine on grinding. Tetrahedron Lett., 2010, 51(24), 3193-3196.
[http://dx.doi.org/10.1016/j.tetlet.2010.04.038]
[33]
Lee, B.; Kang, P.; Lee, K.H.; Cho, J.; Nam, W.; Lee, W.K.; Hur, N.H. Solid-state and solvent-free synthesis of azines, pyrazoles, and pyridazinones using solid hydrazine. Tetrahedron Lett., 2013, 54(11), 1384-1388.
[http://dx.doi.org/10.1016/j.tetlet.2012.12.106]
[34]
Piste, P.; Zambare, D. Synthesis of some n 1 -substituted pyrazole derivatives by grinding technique. Biomed. Sci., 2014, 3, 284-290.
[35]
Abdelaziem, A. An efficient and simple synthesis of 2,3-dihydro-1,3,4-thiadiazoles, pyrazoles and coumarins containing benzofuran moiety using both conventional and grinding methods. Int. J. Pharm. Pharm. Sci., 2015, 7, 61-68.
[36]
Zhang, Z.; Tan, Y.J.; Wang, C.S.; Wu, H.H. One-Pot Synthesis of 3,5-diphenyl-1h-pyrazoles from chalcones and hydrazine under mechanochemical ball milling. Heterocycles, 2014, 89(1), 103-112.
[http://dx.doi.org/10.3987/COM-13-12867]
[37]
Wang, Z.X.; Qin, H.L. Solventless syntheses of pyrazole derivatives. Green Chem., 2004, 6(2), 90-92.
[http://dx.doi.org/10.1039/b312833d]
[38]
Punjabi, P.B.; Pathak, A.K.; Ameta, C.; Rawal, M.K.; Ameta, R. Green chemical synthesis of diverse iminosaccharides of substituted pyrazole using lonic liquid. Eur. Chem. Bull., 2015, 3(10-12), 1107-1111.
[39]
Pogaku, V.; Krishna, V.S.; Sriram, D.; Rangan, K.; Basavoju, S. Ultrasonication-ionic liquid synergy for the synthesis of new potent anti-tuberculosis 1,2,4-triazol-1-yl-pyrazole based spirooxindolopyrrolizidines. Bioorg. Med. Chem. Lett., 2019, 29(13), 1682-1687.
[http://dx.doi.org/10.1016/j.bmcl.2019.04.026] [PMID: 31047752]
[40]
Yadav, J.S.; Reddy, B.V.S.; Satheesh, G.; Naga Lakshmi, P.; Kiran Kumar, S.; Kunwar, A.C. Rapid and efficient synthesis of optically active pyrazoles under solvent-free conditions. Tetrahedron Lett., 2004, 45(46), 8587-8590.
[http://dx.doi.org/10.1016/j.tetlet.2004.09.040]
[41]
Suryakiran, N.; Reddy, T.S.; Latha, K.A.; Prabhakar, P.; Yadagiri, K.; Venkateswarlu, Y. An expeditious synthesis of 3-amino 2H-pyrazoles promoted by methanesulphonic acid under solvent and solvent free conditions. J. Mol. Catal. Chem., 2006, 258(1-2), 371-375.
[http://dx.doi.org/10.1016/j.molcata.2006.07.054]
[42]
Noura, S.; Ghorbani, M.; Zolfigol, M.A.; Narimani, M.; Yarie, M.; Oftadeh, M. Biological based (nano) gelatoric ionic liquids (NGILs): Application as catalysts in the synthesis of a substituted pyrazole via vinylogous anomeric based oxidation. J. Mol. Liq., 2018, 271, 778-785.
[http://dx.doi.org/10.1016/j.molliq.2018.09.023]
[43]
Thirunarayanan, G.; Sekar, K.G. Solvent-free one-pot cyclization and acetylation of chalcones: Synthesis of some 1-acetyl pyrazoles and spectral correlations of 1-(3-(3,4-dimethylphenyl)-5-(substituted phenyl)-4,5-dihydro-1H-pyrazole-1-yl) ethanones. J. Saudi Chem. Soc., 2016, 20(6), 661-672.
[http://dx.doi.org/10.1016/j.jscs.2013.12.002]
[44]
Sun, P.; Yang, D.; Wei, W.; Sun, X.; Zhang, W.; Zhang, H.; Wang, Y.; Wang, H. Metal- and solvent-free, iodine-catalyzed cyclocondensation and C H bond sulphenylation: A facile access to C-4 sulfenylated pyrazoles via a domino multicomponent reaction. Tetrahedron, 2017, 73(15), 2022-2029.
[http://dx.doi.org/10.1016/j.tet.2017.02.046]
[45]
Moreira, D.N.; Longhi, K.; Frizzo, C.P.; Bonacorso, H.G.; Zanatta, N.; Martins, M.A.P. Ionic liquid promoted cyclocondensation reactions to the formation of isoxazoles, pyrazoles and pyrimidines. Catal. Commun., 2010, 11(5), 476-479.
[http://dx.doi.org/10.1016/j.catcom.2009.12.001]
[46]
Beyzaei, H.; Motraghi, Z.; Aryan, R.; Mehdi Zahedi, M.; Samzadeh-Kermani, A. Green one-pot synthesis of novel polysubstituted pyrazole derivatives as potential antimicrobial agents. Acta Chim. Slov., 2017, 64(4), 911-918.
[http://dx.doi.org/10.17344/acsi.2017.3609] [PMID: 29318288]
[47]
Shojaei, R.; Zahedifar, M.; Mohammadi, P.; Saidi, K.; Sheibani, H. Novel magnetic nanoparticle supported ionic liquid as an efficient catalyst for the synthesis of spiro [pyrazole-pyrazolo[3,4-b]pyridine]-dione derivatives under solvent free conditions. J. Mol. Struct., 2019, 1178, 401-407.
[http://dx.doi.org/10.1016/j.molstruc.2018.10.052]
[48]
Kumari, K.; Raghuvanshi, D.S.; Jouikov, V.; Singh, K.N. Sc(OTf)3-catalyzed, solvent-free domino synthesis of functionalized pyrazoles under controlled microwave irradiation. Tetrahedron Lett., 2012, 53(9), 1130-1133.
[http://dx.doi.org/10.1016/j.tetlet.2011.12.094]
[49]
Lim, F.P.L.; Tan, K.C.; Luna, G.; Tiekink, E.R.T.; Dolzhenko, A.V. A new practical synthesis of 3-amino-substituted 5-aminopyrazoles and their tautomerism. Tetrahedron, 2019, 75(15), 2314-2321.
[http://dx.doi.org/10.1016/j.tet.2019.03.003]
[50]
Cheng, H.; Wu, Q.Y.; Han, F.; Yang, G.F. Efficient synthesis of 4-substituted pyrazole via microwave-promoted Suzuki cross-coupling reaction. Chin. Chem. Lett., 2014, 25(5), 705-709.
[http://dx.doi.org/10.1016/j.cclet.2014.03.013]
[51]
Mosallanejad, A.; Lorthioir, O. Application of Tsunoda reagent to the convenient synthesis of drug-like pyrazoles. Tetrahedron Lett., 2018, 59(18), 1708-1710.
[http://dx.doi.org/10.1016/j.tetlet.2018.03.045]
[52]
Althagafi, I.I.; Shaaban, M.R. Microwave assisted regioselective synthesis of novel pyrazoles and pyrazolopyridazines via fluorine containing building blocks. J. Mol. Struct., 2017, 1142, 122-129.
[http://dx.doi.org/10.1016/j.molstruc.2017.04.047]
[53]
Patel, D.M.; Sharma, M.G.; Vala, R.M.; Lagunes, I.; Puerta, A.; Padrón, J.M.; Rajani, D.P.; Patel, H.M. Hydroxyl alkyl ammonium ionic liquid assisted green and one-pot regioselective access to functionalized pyrazolodihydropyridine core and their pharmacological evaluation. Bioorg. Chem., 2019, 86, 137-150.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.029] [PMID: 30690337]
[54]
Kumar, P.; Kumar, S.; Husain, K.; Kumar, A. An efficient synthesis of pyrazole chalcones under solvent free conditions at room temperature. Chin. Chem. Lett., 2011, 22(1), 37-40.
[http://dx.doi.org/10.1016/j.cclet.2010.07.019]
[55]
Shaabani, A.; Sepahvand, H.; Keramati Nejad, M. A re-engineering approach: synthesis of pyrazolo[1,2-a]pyrazoles and pyrano[2,3-c]pyrazoles via an isocyanide-based four-component reaction under solvent-free conditions. Tetrahedron Lett., 2016, 57(13), 1435-1437.
[http://dx.doi.org/10.1016/j.tetlet.2016.02.051]
[56]
Liju, W.; Ablajan, K.; Jun, F. Rapid and efficient one-pot synthesis of spiro[indoline-3,4′-pyrano[2, 3-c]pyrazole] derivatives catalyzed by l-proline under ultrasound irradiation. Ultrason. Sonochem., 2015, 22, 113-118.
[http://dx.doi.org/10.1016/j.ultsonch.2014.05.013] [PMID: 24931425]
[57]
Wadhal, S.A. Microwave assisted improved method for the synthesis, and characterization of n-aroyl-3,5-disubstituted pyrazoles. J. Chem. Pharm. Res., 2016, 8(12), 19-20.
[58]
Sujeevan Reddy, G.; Babu Nallapati, S.; Sri Saranya, P.S.V.K.; Sridhar, B.; Bhat Giliyaru, V.; Chandrashekhar Hariharapura, R.; Gautham Shenoy, G.; Pal, M. Propargylamine (secondary) as a building block in indole synthesis involving ultrasound assisted Pd/Cu-catalyzed coupling-cyclization method: Unexpected formation of (pyrazole)imine derivatives. Tetrahedron Lett., 2018, 59(52), 4587-4592.
[http://dx.doi.org/10.1016/j.tetlet.2018.11.037]
[59]
Sapkal, A.; Kamble, S.; Prola, L.D.T.; Moreira, D.N.; Marzari, M.R.B.; Scapin, E.; Zanatta, N.; Bonacorso, H.G.; Martins, M.A.P. Greener and environmentally benign methodology for the synthesis of pyrazole derivatives. ChemistrySelect, 2020, 5(42), 12971-13026.
[http://dx.doi.org/10.1002/slct.202003008]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy