Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Microbial Metabolites-induced Epigenetic Modifications for Inhibition of Colorectal Cancer: Current Status and Future Perspectives

Author(s): Vaibhav Singh, Ekta Shirbhate, Rakesh Kore, Subham Vishwakarma, Shadiya Parveen, Ravichandran Veerasamy, Amit K Tiwari and Harish Rajak*

Volume 25, Issue 1, 2025

Published on: 05 July, 2024

Page: [76 - 93] Pages: 18

DOI: 10.2174/0113895575320344240625080555

Price: $65

Abstract

Globally, one of the most prevalent cancers is colorectal cancer (CRC). Chemotherapy and surgery are two common conventional CRC therapies that are frequently ineffective and have serious adverse effects. Thus, there is a need for complementary and different therapeutic approaches. The use of microbial metabolites to trigger epigenetic alterations as a way of preventing CRC is one newly emerging field of inquiry. Small chemicals called microbial metabolites, which are made by microbes and capable of altering host cell behaviour, are created. Recent research has demonstrated that these metabolites can lead to epigenetic modifications such as histone modifications, DNA methylation, and non-coding RNA regulation, which can control gene expression and affect cellular behaviour. This review highlights the current knowledge on the epigenetic modification for cancer treatment, immunomodulatory and anti-carcinogenic attributes of microbial metabolites, gut epigenetic targeting system, and the role of dietary fibre and gut microbiota in cancer treatment. It also focuses on short-chain fatty acids, especially butyrates (which are generated by microbes), and their cancer treatment perspective, challenges, and limitations, as well as state-of-the-art research on microbial metabolites-induced epigenetic changes for CRC inhibition. In conclusion, the present work highlights the potential of microbial metabolites-induced epigenetic modifications as a novel therapeutic strategy for CRC suppression and guides future research directions in this dynamic field.

Keywords: Microbial metabolites, colorectal cancer, epigenetic, short-chain fatty acids, microbiota, intestinal epithelial cells.

« Previous
Graphical Abstract
[1]
Hossain, M.S.; Karuniawati, H.; Jairoun, A.A.; Urbi, Z.; Ooi, D.J.; John, A.; Lim, Y.C.; Kibria, K.M.K.; Mohiuddin, A.K.M.; Ming, L.C.; Goh, K.W.; Hadi, M.A. Colorectal cancer: A review of carcinogenesis, global epidemiology, current challenges, risk factors, preventive and treatment strategies. Cancers, 2022, 14(7), 1732.
[http://dx.doi.org/10.3390/cancers14071732] [PMID: 35406504]
[2]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[3]
Akimoto, N.; Ugai, T.; Zhong, R.; Hamada, T.; Fujiyoshi, K.; Giannakis, M.; Wu, K.; Cao, Y.; Ng, K.; Ogino, S. Rising incidence of early-onset colorectal cancer a call to action. Nat. Rev. Clin. Oncol., 2021, 18(4), 230-243.
[http://dx.doi.org/10.1038/s41571-020-00445-1] [PMID: 33219329]
[4]
Marcellinaro, R.; Spoletini, D.; Grieco, M.; Avella, P.; Cappuccio, M.; Troiano, R.; Lisi, G.; Garbarino, G.M.; Carlini, M. Colorectal cancer: Current updates and future perspectives. J. Clin. Med., 2023, 13(1), 40.
[http://dx.doi.org/10.3390/jcm13010040] [PMID: 38202047]
[5]
Kaminski, M.F.; Robertson, D.J.; Senore, C.; Rex, D.K. Optimizing the quality of colorectal cancer screening worldwide. Gastroenterology, 2020, 158(2), 404-417.
[http://dx.doi.org/10.1053/j.gastro.2019.11.026] [PMID: 31759062]
[6]
Kanth, P.; Inadomi, J.M. Screening and prevention of colorectal cancer. BMJ, 2021, 374, n1855.
[http://dx.doi.org/10.1136/bmj.n1855] [PMID: 34526356]
[7]
Li, J.; Zhang, A.; Wu, F.; Wang, X. Alterations in the gut microbiota and their metabolites in colorectal cancer: Recent progress and prospects. Front. Oncol., 2022, 12, 841552.
[http://dx.doi.org/10.3389/fonc.2022.841552] [PMID: 35223525]
[8]
Kumar, M.; Nagpal, R.; Verma, V.; Kumar, A.; Kaur, N.; Hemalatha, R.; Gautam, S.K.; Singh, B. Probiotic metabolites as epigenetic targets in the prevention of colon cancer. Nutr. Rev., 2013, 71(1), 23-34.
[http://dx.doi.org/10.1111/j.1753-4887.2012.00542.x] [PMID: 23282249]
[9]
Groh, I.A.M.; Chen, C.; Lüske, C.; Cartus, A.T.; Esselen, M. Plant polyphenols and oxidative metabolites of the herbal alkenylbenzene methyleugenol suppress histone deacetylase activity in human colon carcinoma cells. J. Nutr. Metab., 2013, 2013, 1-10.
[http://dx.doi.org/10.1155/2013/821082] [PMID: 23476753]
[10]
Kumar, M.; Hemalatha, R.; Kumar, R.; Nagpal, R.; Devraj, J.P.; Verma, V.; Behare, P.; Mal, G.; Singh, B. Epigenetics, probiotic metabolites and colon cancer prevention: An overview of progress, opportunities and challenges. Med. Epigenet., 2013, 1(1), 60-69.
[http://dx.doi.org/10.1159/000354719]
[11]
Canani, R.B.; Di Costanzo, M.; Leone, L.; Bedogni, G.; Brambilla, P.; Cianfarani, S.; Nobili, V.; Pietrobelli, A.; Agostoni, C. Epigenetic mechanisms elicited by nutrition in early life. Nutr. Res. Rev., 2011, 24(2), 198-205.
[http://dx.doi.org/10.1017/S0954422411000102] [PMID: 22008232]
[12]
Louis, P.; Flint, H.J. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol. Lett., 2009, 294(1), 1-8.
[http://dx.doi.org/10.1111/j.1574-6968.2009.01514.x] [PMID: 19222573]
[13]
Montalban-Arques, A.; Scharl, M. Intestinal microbiota and colorectal carcinoma: Implications for pathogenesis, diagnosis, and therapy. EBioMedicine, 2019, 48, 648-655.
[http://dx.doi.org/10.1016/j.ebiom.2019.09.050] [PMID: 31631043]
[14]
Sinha, R.; Ahn, J.; Sampson, J.N.; Shi, J.; Yu, G.; Xiong, X.; Hayes, R.B.; Goedert, J.J. Fecal microbiota, fecal metabolome, and colorectal cancer interrelations. PLoS One, 2016, 11(3), e0152126.
[http://dx.doi.org/10.1371/journal.pone.0152126] [PMID: 27015276]
[15]
Yang, Y.; Misra, B.B.; Liang, L.; Bi, D.; Weng, W.; Wu, W.; Cai, S.; Qin, H.; Goel, A.; Li, X.; Ma, Y. Integrated microbiome and metabolome analysis reveals a novel interplay between commensal bacteria and metabolites in colorectal cancer. Theranostics, 2019, 9(14), 4101-4114.
[http://dx.doi.org/10.7150/thno.35186] [PMID: 31281534]
[16]
Kim, M.; Vogtmann, E.; Ahlquist, D.A.; Devens, M.E.; Kisiel, J.B.; Taylor, W.R.; White, B.A.; Hale, V.L.; Sung, J.; Chia, N.; Sinha, R.; Chen, J. Fecal metabolomic signatures in colorectal adenoma patients are associated with gut microbiota and early events of colorectal cancer pathogenesis. MBio, 2020, 11(1), e03186-e19.
[http://dx.doi.org/10.1128/mBio.03186-19] [PMID: 32071266]
[17]
Chen, H.; Zhang, F.; Zhang, J.; Zhang, X.; Guo, Y.; Yao, Q. A holistic view of berberine inhibiting intestinal carcinogenesis in conventional mice based on microbiome metabolomics analysis. Front. Immunol., 2020, 11, 588079.
[http://dx.doi.org/10.3389/fimmu.2020.588079] [PMID: 33072135]
[18]
Cheng, Y.; He, C.; Wang, M.; Ma, X.; Mo, F.; Yang, S.; Han, J.; Wei, X. Targeting epigenetic regulators for cancer therapy: Mechanisms and advances in clinical trials. Signal Transduct. Target. Ther., 2019, 4(1), 62.
[http://dx.doi.org/10.1038/s41392-019-0095-0] [PMID: 31871779]
[19]
Singh, V.; Shirbhate, E.; Kore, R.; Mishra, A.; Johariya, V.; Veerasamy, R.; Tiwari, A.K.; Rajak, H. Dietary plant metabolites induced epigenetic modification as a novel strategy for the management of prostate cancer. Mini Rev. Med. Chem., 2024, 24(15), 1409-1426.
[http://dx.doi.org/10.2174/0113895575283895240207065454] [PMID: 38385496]
[20]
Easwaran, H.; Tsai, H.C.; Baylin, S.B. Cancer epigenetics: Tumor heterogeneity, plasticity of stem-like states, and drug resistance. Mol. Cell, 2014, 54(5), 716-727.
[http://dx.doi.org/10.1016/j.molcel.2014.05.015] [PMID: 24905005]
[21]
Lu, Y.; Chan, Y.T.; Tan, H.Y.; Li, S.; Wang, N.; Feng, Y. Epigenetic regulation in human cancer: The potential role of epi-drug in cancer therapy. Mol. Cancer, 2020, 19(1), 79.
[http://dx.doi.org/10.1186/s12943-020-01197-3] [PMID: 32340605]
[22]
Jones, P.A.; Baylin, S.B. The epigenomics of cancer. Cell, 2007, 128(4), 683-692.
[http://dx.doi.org/10.1016/j.cell.2007.01.029] [PMID: 17320506]
[23]
Fardi, M.; Solali, S.; Farshdousti Hagh, M. Epigenetic mechanisms as a new approach in cancer treatment: An updated review. Genes Dis., 2018, 5(4), 304-311.
[http://dx.doi.org/10.1016/j.gendis.2018.06.003] [PMID: 30591931]
[24]
Lister, R.; Pelizzola, M.; Dowen, R.H.; Hawkins, R.D.; Hon, G.; Tonti-Filippini, J.; Nery, J.R.; Lee, L.; Ye, Z.; Ngo, Q.M.; Edsall, L.; Antosiewicz-Bourget, J.; Stewart, R.; Ruotti, V.; Millar, A.H.; Thomson, J.A.; Ren, B.; Ecker, J.R. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 2009, 462(7271), 315-322.
[http://dx.doi.org/10.1038/nature08514] [PMID: 19829295]
[25]
Bird, A.P. CpG-rich islands and the function of DNA methylation. Nature, 1986, 321(6067), 209-213.
[http://dx.doi.org/10.1038/321209a0] [PMID: 2423876]
[26]
Robertson, K.D. DNA methylation and human disease. Nat. Rev. Genet., 2005, 6(8), 597-610.
[http://dx.doi.org/10.1038/nrg1655] [PMID: 16136652]
[27]
Jin, B.; Tao, Q.; Peng, J.; Soo, H.M.; Wu, W.; Ying, J.; Fields, C.R.; Delmas, A.L.; Liu, X.; Qiu, J.; Robertson, K.D. DNA methyltransferase 3B (DNMT3B) mutations in ICF syndrome lead to altered epigenetic modifications and aberrant expression of genes regulating development, neurogenesis and immune function. Hum. Mol. Genet., 2008, 17(5), 690-709.
[http://dx.doi.org/10.1093/hmg/ddm341] [PMID: 18029387]
[28]
Pradhan, S.; Talbot, D.; Sha, M.; Benner, J.; Hornstra, L.; Li, E.; Jaenisch, R.; Roberts, R.J. Baculovirus-mediated expression and characterization of the full-length murine DNA methyltransferase. Nucleic Acids Res., 1997, 25(22), 4666-4673.
[http://dx.doi.org/10.1093/nar/25.22.4666] [PMID: 9358180]
[29]
Goyal, R.; Reinhardt, R.; Jeltsch, A. Accuracy of DNA methylation pattern preservation by the Dnmt1 methyltransferase. Nucleic Acids Res., 2006, 34(4), 1182-1188.
[http://dx.doi.org/10.1093/nar/gkl002] [PMID: 16500889]
[30]
Salek Farrokhi, A.; Mohammadlou, M.; Abdollahi, M.; Eslami, M.; Yousefi, B. Histone deacetylase modifications by probiotics in colorectal cancer. J. Gastrointest. Cancer, 2020, 51(3), 754-764.
[http://dx.doi.org/10.1007/s12029-019-00338-2] [PMID: 31808058]
[31]
Ruijter, A.J.M.; Gennip, A.H.; Caron, H.N.; Kemp, S.; Kuilenburg, A.B.P. Histone deacetylases (HDACs): Characterization of the classical HDAC family. Biochem. J., 2003, 370(3), 737-749.
[http://dx.doi.org/10.1042/bj20021321] [PMID: 12429021]
[32]
Cedar, H.; Bergman, Y. Linking DNA methylation and histone modification: Patterns and paradigms. Nat. Rev. Genet., 2009, 10(5), 295-304.
[http://dx.doi.org/10.1038/nrg2540] [PMID: 19308066]
[33]
Suganuma, T.; Workman, J.L. Signals and combinatorial functions of histone modifications. Annu. Rev. Biochem., 2011, 80(1), 473-499.
[http://dx.doi.org/10.1146/annurev-biochem-061809-175347] [PMID: 21529160]
[34]
Kouzarides, T. Chromatin modifications and their function. Cell, 2007, 128(4), 693-705.
[http://dx.doi.org/10.1016/j.cell.2007.02.005] [PMID: 17320507]
[35]
Cohen, I.; Poręba, E.; Kamieniarz, K.; Schneider, R. Histone modifiers in cancer: Friends or foes? Genes Cancer, 2011, 2(6), 631-647.
[http://dx.doi.org/10.1177/1947601911417176] [PMID: 21941619]
[36]
Bannister, A.J.; Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res., 2011, 21(3), 381-395.
[http://dx.doi.org/10.1038/cr.2011.22] [PMID: 21321607]
[37]
Portela, A.; Esteller, M. Epigenetic modifications and human disease. Nat. Biotechnol., 2010, 28(10), 1057-1068.
[http://dx.doi.org/10.1038/nbt.1685] [PMID: 20944598]
[38]
Li, B.; Carey, M.; Workman, J.L. The role of chromatin during transcription. Cell, 2007, 128(4), 707-719.
[http://dx.doi.org/10.1016/j.cell.2007.01.015] [PMID: 17320508]
[39]
Izzo, A.; Schneider, R. Chatting histone modifications in mammals. Brief. Funct. Genomics, 2010, 9(5-6), 429-443.
[http://dx.doi.org/10.1093/bfgp/elq024] [PMID: 21266346]
[40]
Kanwal, R.; Gupta, S. Epigenetic modifications in cancer. Clin. Genet., 2012, 81(4), 303-311.
[http://dx.doi.org/10.1111/j.1399-0004.2011.01809.x] [PMID: 22082348]
[41]
Sadakierska-Chudy, A. MicroRNAs: Diverse mechanisms of action and their potential applications as cancer epi-therapeutics. Biomolecules, 2020, 10(9), 1285.
[http://dx.doi.org/10.3390/biom10091285] [PMID: 32906681]
[42]
Bandres, E.; Agirre, X.; Ramirez, N.; Zarate, R.; Garcia-Foncillas, J. MicroRNAs as cancer players: Potential clinical and biological effects. DNA Cell Biol., 2007, 26(5), 273-282.
[http://dx.doi.org/10.1089/dna.2006.0544] [PMID: 17504023]
[43]
Zhu, P.; Martin, E.; Mengwasser, J.; Schlag, P.; Janssen, K.P.; Göttlicher, M. Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell, 2004, 5(5), 455-463.
[http://dx.doi.org/10.1016/S1535-6108(04)00114-X] [PMID: 15144953]
[44]
Mao, Q.D.; Zhang, W.; Zhao, K.; Cao, B.; Yuan, H.; Wei, L.Z.; Song, M.Q.; Liu, X.S. MicroRNA-455 suppresses the oncogenic function of HDAC2 in human colorectal cancer. Braz. J. Med. Biol. Res., 2017, 50(6), e6103.
[http://dx.doi.org/10.1590/1414-431x20176103] [PMID: 28538837]
[45]
Liu, N.; Zhao, R.; Ma, Y.; Wang, D.; Yan, C.; Zhou, D.; Yin, F.; Li, Z. The development of epigenetics and related inhibitors for targeted drug design in cancer therapy. Curr. Top. Med. Chem., 2019, 18(28), 2380-2394.
[http://dx.doi.org/10.2174/1568026618666181115092623] [PMID: 30430946]
[46]
Nepali, K.; Liou, J.P. Recent developments in epigenetic cancer therapeutics: Clinical advancement and emerging trends. J. Biomed. Sci., 2021, 28(1), 27.
[http://dx.doi.org/10.1186/s12929-021-00721-x] [PMID: 33840388]
[47]
Barbarotta, L.; Hurley, K. Romidepsin for the treatment of peripheral T- celllymphoma. J. Adv. Pract. Oncol., 2015, 6(1), 22-36.
[http://dx.doi.org/10.6004/jadpro.2015.6.1.3] [PMID: 26413372]
[48]
Marks, P.A. Discovery and development of SAHA as an anticancer agent. Oncogene, 2007, 26(9), 1351-1356.
[http://dx.doi.org/10.1038/sj.onc.1210204] [PMID: 17322921]
[49]
Qian, X.; Ara, G.; Mills, E.; LaRochelle, W.J.; Lichenstein, H.S.; Jeffers, M. Activity of the histone deacetylase inhibitor belinostat (PXD101) in preclinical models of prostate cancer. Int. J. Cancer, 2008, 122(6), 1400-1410.
[http://dx.doi.org/10.1002/ijc.23243] [PMID: 18027850]
[50]
Guan, X.W.; Wang, H.Q.; Ban, W.W.; Chang, Z.; Chen, H.Z.; Jia, L.; Liu, F.T. Novel HDAC inhibitor chidamide synergizes with rituximab to inhibit diffuse large B-cell lymphoma tumour growth by upregulating CD20. Cell Death Dis., 2020, 11(1), 20.
[http://dx.doi.org/10.1038/s41419-019-2210-0] [PMID: 31907371]
[51]
Laubach, J.P.; Moreau, P.; San-Miguel, J.F.; Richardson, P.G. Panobinostat for the treatment of multiple myeloma. Clin. Cancer Res., 2015, 21(21), 4767-4773.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0530] [PMID: 26362997]
[52]
FDA approves first treatment option specifically for patients with epithelioid sarcoma, a rare soft tissue cancer. Available from: https://www.fda.gov/ (Accessed Jan 18, 2020).
[53]
Smith, P.M.; Howitt, M.R.; Panikov, N.; Michaud, M.; Gallini, C.A.; Bohlooly-Y, M.; Glickman, J.N.; Garrett, W.S. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science, 2013, 341(6145), 569-573.
[http://dx.doi.org/10.1126/science.1241165] [PMID: 23828891]
[54]
Donohoe, D.R.; Collins, L.B.; Wali, A.; Bigler, R.; Sun, W.; Bultman, S.J. The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol. Cell, 2012, 48(4), 612-626.
[http://dx.doi.org/10.1016/j.molcel.2012.08.033] [PMID: 23063526]
[55]
Schilderink, R.; Verseijden, C.; Seppen, J.; Muncan, V.; van den Brink, G.R.; Lambers, T.T.; van Tol, E.A.; de Jonge, W.J. The SCFA butyrate stimulates the epithelial production of retinoic acid via inhibition of epithelial HDAC. Am. J. Physiol. Gastrointest. Liver Physiol., 2016, 310(11), G1138-G1146.
[http://dx.doi.org/10.1152/ajpgi.00411.2015] [PMID: 27151945]
[56]
Louis, P.; Hold, G.L.; Flint, H.J. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol., 2014, 12(10), 661-672.
[http://dx.doi.org/10.1038/nrmicro3344] [PMID: 25198138]
[57]
Anshory, M.; Effendi, R.M.R.A.; Kalim, H.; Dwiyana, R.F.; Suwarsa, O.; Nijsten, T.E.C.; Nouwen, J.L.; Thio, H.B. Butyrate properties in immune-related diseases: Friend or foe? Fermentation, 2023, 9(3), 205.
[http://dx.doi.org/10.3390/fermentation9030205]
[58]
Plöger, S.; Stumpff, F.; Penner, G.B.; Schulzke, J.D.; Gäbel, G.; Martens, H.; Shen, Z.; Günzel, D.; Aschenbach, J.R. Microbial butyrate and its role for barrier function in the gastrointestinal tract. Ann. N. Y. Acad. Sci., 2012, 1258(1), 52-59.
[http://dx.doi.org/10.1111/j.1749-6632.2012.06553.x] [PMID: 22731715]
[59]
Nogal, A.; Louca, P.; Zhang, X.; Wells, P.M.; Steves, C.J.; Spector, T.D.; Falchi, M.; Valdes, A.M.; Menni, C. Circulating levels of the short-chain fatty acid acetate mediate the effect of the gut microbiome on visceral fat. Front. Microbiol., 2021, 12, 711359.
[http://dx.doi.org/10.3389/fmicb.2021.711359] [PMID: 34335546]
[60]
Vinolo, M.A.R.; Rodrigues, H.G.; Nachbar, R.T.; Curi, R. Regulation of inflammation by short chain fatty acids. Nutrients, 2011, 3(10), 858-876.
[http://dx.doi.org/10.3390/nu3100858] [PMID: 22254083]
[61]
Chang, P.V.; Hao, L.; Offermanns, S.; Medzhitov, R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl. Acad. Sci., 2014, 111(6), 2247-2252.
[http://dx.doi.org/10.1073/pnas.1322269111] [PMID: 24390544]
[62]
Reichardt, N.; Duncan, S.H.; Young, P.; Belenguer, A.; McWilliam Leitch, C.; Scott, K.P.; Flint, H.J.; Louis, P. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J., 2014, 8(6), 1323-1335.
[http://dx.doi.org/10.1038/ismej.2014.14] [PMID: 24553467]
[63]
Schilderink, R.; Verseijden, C.; de Jonge, W.J. Dietary inhibitors of histone deacetylases in intestinal immunity and homeostasis. Front. Immunol., 2013, 4, 226.
[http://dx.doi.org/10.3389/fimmu.2013.00226] [PMID: 23914191]
[64]
Vinolo, M.A.R.; Rodrigues, H.G.; Hatanaka, E.; Hebeda, C.B.; Farsky, S.H.P.; Curi, R. Short-chain fatty acids stimulate the migration of neutrophils to inflammatory sites. Clin. Sci., 2009, 117(9), 331-338.
[http://dx.doi.org/10.1042/CS20080642] [PMID: 19335337]
[65]
Song, M.; Chan, A.T. Diet, gut microbiota, and colorectal cancer prevention: A review of potential mechanisms and promising targets for future research. Curr. Colorectal Cancer Rep., 2017, 13(6), 429-439.
[http://dx.doi.org/10.1007/s11888-017-0389-y] [PMID: 29333111]
[66]
Estupiñán, M.; Hernández, I.; Saitua, E.; Bilbao, M.E.; Mendibil, I.; Ferrer, J.; Alonso-Sáez, L. Novel Vibrio spp. strains producing omega-3 fatty acids isolated from coastal seawater. Mar. Drugs, 2020, 18(2), 99.
[http://dx.doi.org/10.3390/md18020099] [PMID: 32024040]
[67]
Perdana, B.A.; Chaidir, Z.; Kusnanda, A.J.; Dharma, A.; Zakaria, I.J. Syafrizayanti; Bayu, A.; Putra, M.Y. Omega-3 fatty acids of microalgae as a food supplement: A review of exogenous factors for production enhancement. Algal Res., 2021, 60, 102542.
[http://dx.doi.org/10.1016/j.algal.2021.102542]
[68]
Calder, P.C. Omega-3 fatty acids and inflammatory processes: From molecules to man. Biochem. Soc. Trans., 2017, 45(5), 1105-1115.
[http://dx.doi.org/10.1042/BST20160474] [PMID: 28900017]
[69]
Volpato, M.; Hull, M.A. Omega-3 polyunsaturated fatty acids as adjuvant therapy of colorectal cancer. Cancer Metastasis Rev., 2018, 37(2-3), 545-555.
[http://dx.doi.org/10.1007/s10555-018-9744-y] [PMID: 29971573]
[70]
Hussey, B.; Lindley, M.R.; Mastana, S.S. Omega 3 fatty acids, inflammation and DNA methylation: An overview. Clin. Lipidol., 2017, 12(1), 24-32.
[http://dx.doi.org/10.1080/17584299.2017.1319454]
[71]
Hullar, M.A.J.; Fu, B.C. Diet, the gut microbiome, and epigenetics. Cancer J., 2014, 20(3), 170-175.
[http://dx.doi.org/10.1097/PPO.0000000000000053] [PMID: 24855003]
[72]
Kiss, A.K.; Granica, S.; Stolarczyk, M.; Melzig, M.F. Epigenetic modulation of mechanisms involved in inflammation: Influence of selected polyphenolic substances on histone acetylation state. Food Chem., 2012, 131(3), 1015-1020.
[http://dx.doi.org/10.1016/j.foodchem.2011.09.109]
[73]
González-Sarrías, A.; Núñez-Sánchez, M.Á.; Tomé-Carneiro, J.; Tomás-Barberán, F.A.; García-Conesa, M.T.; Espín, J.C. Comprehensive characterization of the effects of ellagic acid and urolithins on colorectal cancer and key‐associated molecular hallmarks: MicroRNA cell specific induction of CDKN1A (p21) as a common mechanism involved. Mol. Nutr. Food Res., 2016, 60(4), 701-716.
[http://dx.doi.org/10.1002/mnfr.201500780] [PMID: 26634414]
[74]
Gaya, P.; Peirotén, Á.; Medina, M.; Álvarez, I.; Landete, J.M. Bifidobacterium pseudocatenulatum INIA P815: The first bacterium able to produce urolithins A and B from ellagic acid. J. Funct. Foods, 2018, 45, 95-99.
[http://dx.doi.org/10.1016/j.jff.2018.03.040]
[75]
Bhagat, T.D.; Von Ahrens, D.; Dawlaty, M.; Zou, Y.; Baddour, J.; Achreja, A.; Zhao, H.; Yang, L.; Patel, B.; Kwak, C.; Choudhary, G.S.; Gordon-Mitchell, S.; Aluri, S.; Bhattacharyya, S.; Sahu, S.; Bhagat, P.; Yu, Y.; Bartenstein, M.; Giricz, O.; Suzuki, M.; Sohal, D.; Gupta, S.; Guerrero, P.A.; Batra, S.; Goggins, M.; Steidl, U.; Greally, J.; Agarwal, B.; Pradhan, K.; Banerjee, D.; Nagrath, D.; Maitra, A.; Verma, A. Lactate-mediated epigenetic reprogramming regulates formation of human pancreatic cancer-associated fibroblasts. eLife, 2019, 8, e50663.
[http://dx.doi.org/10.7554/eLife.50663] [PMID: 31663852]
[76]
Philipp, A.B.; Nagel, D.; Stieber, P.; Lamerz, R.; Thalhammer, I.; Herbst, A.; Kolligs, F.T. Circulating cell-free methylated DNA and lactate dehydrogenase release in colorectal cancer. BMC Cancer, 2014, 14(1), 245.
[http://dx.doi.org/10.1186/1471-2407-14-245] [PMID: 24708595]
[77]
Dai, X.; Lv, X.; Thompson, E.W.; Ostrikov, K.K. Histone lactylation: Epigenetic mark of glycolytic switch. Trends Genet., 2022, 38(2), 124-127.
[http://dx.doi.org/10.1016/j.tig.2021.09.009] [PMID: 34627643]
[78]
Abedi, E.; Hashemi, S.M. Lactic acid production–Producing microorganisms and substrates sources-state of art. Heliyon, 2020, 6(10), e04974.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04974]
[79]
Chen, H.S.; Bai, M.H.; Zhang, T.; Li, G.D.; Liu, M. Ellagic acid induces cell cycle arrest and apoptosis through TGF-β/Smad3 signaling pathway in human breast cancer MCF-7 cells. Int. J. Oncol., 2015, 46(4), 1730-1738.
[http://dx.doi.org/10.3892/ijo.2015.2870] [PMID: 25647396]
[80]
Rubavathi, A.; Murugan, A.; Visali, K. Microbial production of ellagic acid from mango pulp processing waste. BioRxiv, 2020, 2020-2023.
[http://dx.doi.org/10.1101/2020.03.17.995597]
[81]
Aguilera-Carbo, A.; Augur, C.; Prado-Barragan, L.A.; Favela-Torres, E.; Aguilar, C.N. Microbial production of ellagic acid and biodegradation of ellagitannins. Appl. Microbiol. Biotechnol., 2008, 78(2), 189-199.
[http://dx.doi.org/10.1007/s00253-007-1276-2] [PMID: 18157721]
[82]
Li, Y.; Yao, J.; Han, C.; Yang, J.; Chaudhry, M.; Wang, S.; Liu, H.; Yin, Y. Quercetin, inflammation and immunity. Nutrients, 2016, 8(3), 167.
[http://dx.doi.org/10.3390/nu8030167] [PMID: 26999194]
[83]
Thapa, S.B.; Pandey, R.P.; Park, Y.I.; Kyung Sohng, J. Biotechnological advances in resveratrol production and its chemical diversity. Molecules, 2019, 24(14), 2571.
[http://dx.doi.org/10.3390/molecules24142571] [PMID: 31311182]
[84]
Farhan, M.; Ullah, M.; Faisal, M.; Farooqi, A.; Sabitaliyevich, U.; Biersack, B.; Ahmad, A. Differential methylation and acetylation as the epigenetic basis of resveratrol’s anticancer activity. Medicines, 2019, 6(1), 24.
[http://dx.doi.org/10.3390/medicines6010024] [PMID: 30781847]
[85]
Sharifi-Rad, M.; Anil Kumar, N.V.; Zucca, P.; Varoni, E.M.; Dini, L.; Panzarini, E.; Rajkovic, J.; Tsouh Fokou, P.V.; Azzini, E.; Peluso, I.; Prakash Mishra, A.; Nigam, M.; El Rayess, Y.; Beyrouthy, M.E.; Polito, L.; Iriti, M.; Martins, N.; Martorell, M.; Docea, A.O.; Setzer, W.N.; Calina, D.; Cho, W.C.; Sharifi-Rad, J. Lifestyle, oxidative stress and antioxidants: Back and forth in the pathophysiology of chronic diseases. Front. Physiol., 2020, 11, 694.
[http://dx.doi.org/10.3389/fphys.2020.00694] [PMID: 32714204]
[86]
Kechagia, M.; Basoulis, D.; Konstantopoulou, S.; Dimitriadi, D.; Gyftopoulou, K.; Skarmoutsou, N.; Fakiri, E.M. Health benefits of probiotics: A review. ISRN Nutr., 2013, 2013, 1-7.
[http://dx.doi.org/10.5402/2013/481651] [PMID: 24959545]
[87]
Sharifi-Rad, J.; Rodrigues, C.F.; Stojanović-Radić, Z.; Dimitrijević, M.; Aleksić, A.; Neffe-Skocińska, K.; Zielińska, D.; Kołożyn-Krajewska, D.; Salehi, B.; Milton Prabu, S.; Schutz, F.; Docea, A.O.; Martins, N.; Calina, D. Probiotics: versatile bioactive components in promoting human health. Medicina, 2020, 56(9), 433.
[http://dx.doi.org/10.3390/medicina56090433] [PMID: 32867260]
[88]
Mei, S.; Deng, Z.; Chen, Y.; Ning, D.; Guo, Y.; Fan, X.; Wang, R.; Meng, Y.; Zhou, Q.; Tian, X. Dysbiosis: The first hit for digestive system cancer. Front. Physiol., 2022, 13, 1040991.
[http://dx.doi.org/10.3389/fphys.2022.1040991] [PMID: 36483296]
[89]
Gareau, M.G.; Sherman, P.M.; Walker, W.A. Probiotics and the gut microbiota in intestinal health and disease. Nat. Rev. Gastroenterol. Hepatol., 2010, 7(9), 503-514.
[http://dx.doi.org/10.1038/nrgastro.2010.117] [PMID: 20664519]
[90]
Plaza-Díaz, J.; Ruiz-Ojeda, F.; Vilchez-Padial, L.; Gil, A. Evidence of the anti- inflammatory effects of probiotics and synbiotics in intestinal chronic diseases. Nutrients, 2017, 9(6), 555.
[http://dx.doi.org/10.3390/nu9060555] [PMID: 28555037]
[91]
Mirzaei, R.; Afaghi, A.; Babakhani, S.; Sohrabi, M.R.; Hosseini-Fard, S.R.; Babolhavaeji, K.; Khani Ali Akbari, S.; Yousefimashouf, R.; Karampoor, S. Role of microbiota-derived short-chain fatty acids in cancer development and prevention. Biomed. Pharmacother., 2021, 139, 111619.
[http://dx.doi.org/10.1016/j.biopha.2021.111619] [PMID: 33906079]
[92]
Yue, Y.; Wang, S.; Shi, J.; Xie, Q.; Li, N.; Guan, J.; Evivie, S.E.; Liu, F.; Li, B.; Huo, G. Effects of Lactobacillus acidophilus KLDS1. 0901 on proliferation and apoptosis of colon cancer cells. Front. Microbiol., 2022, 12, 788040.
[http://dx.doi.org/10.3389/fmicb.2021.788040] [PMID: 35250903]
[93]
Nowak, A.; Kuberski, S.; Libudzisz, Z. Probiotic lactic acid bacteria detoxify N-nitrosodimethylamine. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2014, 31(10), 1678-1687.
[http://dx.doi.org/10.1080/19440049.2014.943304] [PMID: 25010287]
[94]
Plaza-Diaz, J.; Ruiz-Ojeda, F.J.; Gil-Campos, M.; Gil, A. Mechanisms of action of probiotics. Adv. Nutr., 2019, 10(1), S49-S66.
[http://dx.doi.org/10.1093/advances/nmy063] [PMID: 30721959]
[95]
Rodriguez-Arrastia, M.; Martinez-Ortigosa, A.; Rueda-Ruzafa, L.; Folch Ayora, A.; Ropero-Padilla, C. Probiotic supplements on oncology patients’ treatment-related side effects: A systematic review of randomized controlled trials. Int. J. Environ. Res. Public Health, 2021, 18(8), 4265.
[http://dx.doi.org/10.3390/ijerph18084265] [PMID: 33920572]
[96]
Shang, F.; Jiang, X.; Wang, H.; Chen, S.; Wang, X.; Liu, Y.; Guo, S.; Li, D.; Yu, W.; Zhao, Z.; Wang, G. The inhibitory effects of probiotics on colon cancer cells: in vitro and in vivo studies. J. Gastrointest. Oncol., 2020, 11(6), 1224-1232.
[http://dx.doi.org/10.21037/jgo-20-573] [PMID: 33456995]
[97]
Kumar, M.; Verma, V.; Nagpal, R.; Kumar, A.; Behare, P.V.; Singh, B.; Aggarwal, P.K. Anticarcinogenic effect of probiotic fermented milk and chlorophyllin on aflatoxin-B 1 -induced liver carcinogenesis in rats. Br. J. Nutr., 2012, 107(7), 1006-1016.
[http://dx.doi.org/10.1017/S0007114511003953] [PMID: 21816119]
[98]
Nagpal, R.; Kaur, A. Synbiotic effect of various prebiotics on in vitro activities of probiotic lactobacilli. Ecol. Food Nutr., 2011, 50(1), 63-68.
[http://dx.doi.org/10.1080/03670244.2011.539161] [PMID: 21888588]
[99]
Migliore, L.; Migheli, F.; Spisni, R.; Coppedè, F. Genetics, cytogenetics, and epigenetics of colorectal cancer. J. Biomed. Biotechnol., 2011, 2011, 1-19.
[http://dx.doi.org/10.1155/2011/792362] [PMID: 21490705]
[100]
Singh, B.; Bhat, T.K.; Singh, B. Potential therapeutic applications of some antinutritional plant secondary metabolites. J. Agric. Food Chem., 2003, 51(19), 5579-5597.
[http://dx.doi.org/10.1021/jf021150r] [PMID: 12952405]
[101]
Santos, I.S.; Ponte, B.M.; Boonme, P.; Silva, A.M.; Souto, E.B. Nanoencapsulation of polyphenols for protective effect against colon–Rectal cancer. Biotechnol. Adv., 2013, 31(5), 514-523.
[http://dx.doi.org/10.1016/j.biotechadv.2012.08.005] [PMID: 22940401]
[102]
Salek Farrokhi, A.; Darabi, N.; Yousefi, B.; Askandar, R.H.; Shariati, M.; Eslami, M. Is it true that gut microbiota is considered as panacea in cancer therapy? J. Cell. Physiol., 2019, 234(9), 14941-14950.
[http://dx.doi.org/10.1002/jcp.28333] [PMID: 30786013]
[103]
Song, M.; Garrett, W.S.; Chan, A.T. Nutrients, foods, and colorectal cancer prevention. Gastroenterology, 2015, 148(6), 1244-1260.e16.
[http://dx.doi.org/10.1053/j.gastro.2014.12.035] [PMID: 25575572]
[104]
Lasry, A.; Zinger, A.; Ben-Neriah, Y. Inflammatory networks underlying colorectal cancer. Nat. Immunol., 2016, 17(3), 230-240.
[http://dx.doi.org/10.1038/ni.3384] [PMID: 26882261]
[105]
Zmora, N.; Zeevi, D.; Korem, T.; Segal, E.; Elinav, E. Taking it personally: Personalized utilization of the human microbiome in health and disease. Cell Host Microbe, 2016, 19(1), 12-20.
[http://dx.doi.org/10.1016/j.chom.2015.12.016] [PMID: 26764593]
[106]
Bultman, S.J. Interplay between diet, gut microbiota, epigenetic events, and colorectal cancer. Mol. Nutr. Food Res., 2017, 61(1), 1500902.
[http://dx.doi.org/10.1002/mnfr.201500902] [PMID: 27138454]
[107]
Burns, M.B.; Lynch, J.; Starr, T.K.; Knights, D.; Blekhman, R. Virulence genes are a signature of the microbiome in the colorectal tumor microenvironment. Genome Med., 2015, 7(1), 55.
[http://dx.doi.org/10.1186/s13073-015-0177-8] [PMID: 26170900]
[108]
Meeran, S.M.; Ahmed, A.; Tollefsbol, T.O. Epigenetic targets of bioactive dietary components for cancer prevention and therapy. Clin. Epigenetics, 2010, 1(3-4), 101-116.
[http://dx.doi.org/10.1007/s13148-010-0011-5] [PMID: 21258631]
[109]
Meijer, K.; Vonk, R.J.; Priebe, M.G.; Roelofsen, H. Cell-based screening assay for anti-inflammatory activity of bioactive compounds. Food Chem., 2015, 166, 158-164.
[http://dx.doi.org/10.1016/j.foodchem.2014.06.053] [PMID: 25053041]
[110]
Cook, S.I.; Sellin, J.H. Review article: Short chain fatty acids in health and disease. Aliment. Pharmacol. Ther., 1998, 12(6), 499-507.
[http://dx.doi.org/10.1046/j.1365-2036.1998.00337.x] [PMID: 9678808]
[111]
Tan, J.; McKenzie, C.; Potamitis, M.; Thorburn, A.N.; Mackay, C.R.; Macia, L. The role of short-chain fatty acids in health and disease. Adv. Immunol., 2014, 121, 91-119.
[http://dx.doi.org/10.1016/B978-0-12-800100-4.00003-9] [PMID: 24388214]
[112]
Weng, C.Y.; Kuo, T.H.; Chai, L.M.X.; Zou, H.B.; Feng, T.H.; Huang, Y.J.; Tsai, J.C.; Wu, P.H.; Chiu, Y.W.; Lan, E.I.; Sheen, L.Y.; Hsu, C.C. Rapid quantification of gut microbial short-chain fatty acids by pDART-MS. Anal. Chem., 2020, 92(22), 14892-14897.
[http://dx.doi.org/10.1021/acs.analchem.0c03862] [PMID: 33151059]
[113]
Cheng, J.; Hu, H.; Ju, Y.; Liu, J.; Wang, M.; Liu, B.; Zhang, Y. Gut microbiota-derived short-chain fatty acids and depression: Deep insight into biological mechanisms and potential applications. Gen. Psychiatr., 2024, 37(1), e101374.
[http://dx.doi.org/10.1136/gpsych-2023-101374] [PMID: 38390241]
[114]
Mirzaei, R.; Bouzari, B.; Hosseini-Fard, S.R.; Mazaheri, M.; Ahmadyousefi, Y.; Abdi, M.; Jalalifar, S.; Karimitabar, Z.; Teimoori, A.; Keyvani, H.; Zamani, F.; Yousefimashouf, R.; Karampoor, S. Role of microbiota-derived short-chain fatty acids in nervous system disorders. Biomed. Pharmacother., 2021, 139, 111661.
[http://dx.doi.org/10.1016/j.biopha.2021.111661] [PMID: 34243604]
[115]
He, M.; Wei, W.; Zhang, Y.; Xiang, Z.; Peng, D.; Kasimumali, A.; Rong, S. Gut microbial metabolites SCFAs and chronic kidney disease. J. Transl. Med., 2024, 22(1), 172.
[http://dx.doi.org/10.1186/s12967-024-04974-6] [PMID: 38369469]
[116]
Magliocca, G.; Mone, P.; Di Iorio, B.R.; Heidland, A.; Marzocco, S. Short-chain fatty acids in chronic kidney disease: Focus on inflammation and oxidative stress regulation. Int. J. Mol. Sci., 2022, 23(10), 5354.
[http://dx.doi.org/10.3390/ijms23105354] [PMID: 35628164]
[117]
Zhang, Z.; Zhang, H.; Chen, T.; Shi, L.; Wang, D.; Tang, D. Regulatory role of short-chain fatty acids in inflammatory bowel disease. Cell Commun. Signal., 2022, 20(1), 64.
[http://dx.doi.org/10.1186/s12964-022-00869-5] [PMID: 35546404]
[118]
Liu, W.; Luo, X.; Tang, J.; Mo, Q.; Zhong, H.; Zhang, H.; Feng, F. A bridge for short-chain fatty acids to affect inflammatory bowel disease, type 1 diabetes, and non-alcoholic fatty liver disease positively: By changing gut barrier. Eur. J. Nutr., 2021, 60(5), 2317-2330.
[http://dx.doi.org/10.1007/s00394-020-02431-w] [PMID: 33180143]
[119]
Baldi, S.; Menicatti, M.; Nannini, G.; Niccolai, E.; Russo, E.; Ricci, F.; Pallecchi, M.; Romano, F.; Pedone, M.; Poli, G.; Renzi, D.; Taddei, A.; Calabrò, A.S.; Stingo, F.C.; Bartolucci, G.; Amedei, A. Free fatty acids signature in human intestinal disorders: Significant association between butyric acid and celiac disease. Nutrients, 2021, 13(3), 742.
[http://dx.doi.org/10.3390/nu13030742] [PMID: 33652681]
[120]
Berni Canani, R.; Di Costanzo, M.; Leone, L. The epigenetic effects of butyrate: Potential therapeutic implications for clinical practice. Clin. Epigenetics, 2012, 4(1), 4.
[http://dx.doi.org/10.1186/1868-7083-4-4] [PMID: 22414323]
[121]
Stitzlein, L.M.; Adams, J.T.; Stitzlein, E.N.; Dudley, R.W.; Chandra, J. Current and future therapeutic strategies for high-grade gliomas leveraging the interplay between epigenetic regulators and kinase signaling networks. J. Exp. Clin. Cancer Res., 2024, 43(1), 12.
[http://dx.doi.org/10.1186/s13046-023-02923-7] [PMID: 38183103]
[122]
Li, G.; Tian, Y.; Zhu, W.G. The roles of histone deacetylases and their inhibitors in cancer therapy. Front. Cell Dev. Biol., 2020, 8, 576946.
[http://dx.doi.org/10.3389/fcell.2020.576946] [PMID: 33117804]
[123]
Feitelson, M.A.; Arzumanyan, A.; Medhat, A.; Spector, I. Short-chain fatty acids in cancer pathogenesis. Cancer Metastasis Rev., 2023, 42(3), 677-698.
[http://dx.doi.org/10.1007/s10555-023-10117-y] [PMID: 37432606]
[124]
Bhat, M.I.; Kapila, R. Dietary metabolites derived from gut microbiota: critical modulators of epigenetic changes in mammals. Nutr. Rev., 2017, 75(5), 374-389.
[http://dx.doi.org/10.1093/nutrit/nux001] [PMID: 28444216]
[125]
Canani, R.B.; Costanzo, M.D.; Leone, L.; Pedata, M.; Meli, R.; Calignano, A. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J. Gastroenterol., 2011, 17(12), 1519-1528.
[http://dx.doi.org/10.3748/wjg.v17.i12.1519] [PMID: 21472114]
[126]
Waldecker, M.; Kautenburger, T.; Daumann, H.; Busch, C.; Schrenk, D. Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon. J. Nutr. Biochem., 2008, 19(9), 587-593.
[http://dx.doi.org/10.1016/j.jnutbio.2007.08.002] [PMID: 18061431]
[127]
Tian, Y.; Xu, Q.; Sun, L.; Ye, Y.; Ji, G. Short-chain fatty acids administration is protective in colitis-associated colorectal cancer development. J. Nutr. Biochem., 2018, 57, 103-109.
[http://dx.doi.org/10.1016/j.jnutbio.2018.03.007] [PMID: 29694938]
[128]
Lim, S.; Chang, D.H.; Ahn, S.; Kim, B.C. Whole genome sequencing of Faecalibaculum rodentium ALO17, isolated from C57BL/6J laboratory mouse feces. Gut Pathog., 2016, 8(1), 3.
[http://dx.doi.org/10.1186/s13099-016-0087-3] [PMID: 26877770]
[129]
Lee, C.; Lee, S.; Yoo, W. Metabolic interaction between host and the gut microbiota during high-fat diet-induced colorectal cancer. J. Microbiol., 2024, 62(3), 153-165.
[http://dx.doi.org/10.1007/s12275-024-00123-2] [PMID: 38625645]
[130]
Li, J.; Zhang, A.; Wu, F.; Wang, X. Alterations in the gut microbiota and their metabolites in colorectal cancer: recent progress and future prospects. Front. Oncol., 2022, 12, 841552.
[http://dx.doi.org/10.3389/fonc.2022.841552] [PMID: 35223525]
[131]
Zagato, E.; Pozzi, C.; Bertocchi, A.; Schioppa, T.; Saccheri, F.; Guglietta, S.; Fosso, B.; Melocchi, L.; Nizzoli, G.; Troisi, J.; Marzano, M.; Oresta, B.; Spadoni, I.; Atarashi, K.; Carloni, S.; Arioli, S.; Fornasa, G.; Asnicar, F.; Segata, N.; Guglielmetti, S.; Honda, K.; Pesole, G.; Vermi, W.; Penna, G.; Rescigno, M. Endogenous murine microbiota member Faecalibaculum rodentium and its human homologue protect from intestinal tumour growth. Nat. Microbiol., 2020, 5(3), 511-524.
[http://dx.doi.org/10.1038/s41564-019-0649-5] [PMID: 31988379]
[132]
Chen, D.; Jin, D.; Huang, S.; Wu, J.; Xu, M.; Liu, T.; Dong, W.; Liu, X.; Wang, S.; Zhong, W.; Liu, Y.; Jiang, R.; Piao, M.; Wang, B.; Cao, H. Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating Wnt signaling and gut microbiota. Cancer Lett., 2020, 469, 456-467.
[http://dx.doi.org/10.1016/j.canlet.2019.11.019] [PMID: 31734354]
[133]
Zeng, H.; Hamlin, S.K.; Safratowich, B.D.; Cheng, W.H.; Johnson, L.K. Superior inhibitory efficacy of butyrate over propionate and acetate against human colon cancer cell proliferation via cell cycle arrest and apoptosis: Linking dietary fiber to cancer prevention. Nutr. Res., 2020, 83, 63-72.
[http://dx.doi.org/10.1016/j.nutres.2020.08.009] [PMID: 33017771]
[134]
Parada Venegas, D.; De la Fuente, M.K.; Landskron, G.; González, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.; Hermoso, M.A. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol., 2019, 10, 277.
[http://dx.doi.org/10.3389/fimmu.2019.00277] [PMID: 30915065]
[135]
Mishra, S.P.; Karunakar, P.; Taraphder, S.; Yadav, H. Free fatty acid receptors 2 and 3 as microbial metabolite sensors to shape host health: pharmacophysiological view. Biomedicines, 2020, 8(6), 154.
[http://dx.doi.org/10.3390/biomedicines8060154] [PMID: 32521775]
[136]
Wang, G.; Yu, Y.; Wang, Y.Z.; Wang, J.J.; Guan, R.; Sun, Y.; Shi, F.; Gao, J.; Fu, X.L. Role of SCFAs in gut microbiome and glycolysis for colorectal cancer therapy. J. Cell. Physiol., 2019, 234(10), 17023-17049.
[http://dx.doi.org/10.1002/jcp.28436] [PMID: 30888065]
[137]
Guilloteau, P.; Martin, L.; Eeckhaut, V.; Ducatelle, R.; Zabielski, R.; Van Immerseel, F. From the gut to the peripheral tissues: the multiple effects of butyrate. Nutr. Res. Rev., 2010, 23(2), 366-384.
[http://dx.doi.org/10.1017/S0954422410000247] [PMID: 20937167]
[138]
Chen, J.; Vitetta, L. The role of butyrate in attenuating pathobiont-induced hyperinflammation. Immune Netw., 2020, 20(2), e15.
[http://dx.doi.org/10.4110/in.2020.20.e15] [PMID: 32395367]
[139]
Mokhtari, Z.; Gibson, D.L.; Hekmatdoost, A. Nonalcoholic fatty liver disease, the gut microbiome, and diet. Adv. Nutr., 2017, 8(2), 240-252.
[http://dx.doi.org/10.3945/an.116.013151] [PMID: 28298269]
[140]
Gopalakrishnan, V.; Spencer, C.N.; Nezi, L.; Reuben, A.; Andrews, M.C.; Karpinets, T.V.; Prieto, P.A.; Vicente, D.; Hoffman, K.; Wei, S.C.; Cogdill, A.P.; Zhao, L.; Hudgens, C.W.; Hutchinson, D.S.; Manzo, T.; Petaccia de Macedo, M.; Cotechini, T.; Kumar, T.; Chen, W.S.; Reddy, S.M.; Szczepaniak Sloane, R.; Galloway-Pena, J.; Jiang, H.; Chen, P.L.; Shpall, E.J.; Rezvani, K.; Alousi, A.M.; Chemaly, R.F.; Shelburne, S.; Vence, L.M.; Okhuysen, P.C.; Jensen, V.B.; Swennes, A.G.; McAllister, F.; Marcelo Riquelme Sanchez, E.; Zhang, Y.; Le Chatelier, E.; Zitvogel, L.; Pons, N.; Austin-Breneman, J.L.; Haydu, L.E.; Burton, E.M.; Gardner, J.M.; Sirmans, E.; Hu, J.; Lazar, A.J.; Tsujikawa, T.; Diab, A.; Tawbi, H.; Glitza, I.C.; Hwu, W.J.; Patel, S.P.; Woodman, S.E.; Amaria, R.N.; Davies, M.A.; Gershenwald, J.E.; Hwu, P.; Lee, J.E.; Zhang, J.; Coussens, L.M.; Cooper, Z.A.; Futreal, P.A.; Daniel, C.R.; Ajami, N.J.; Petrosino, J.F.; Tetzlaff, M.T.; Sharma, P.; Allison, J.P.; Jenq, R.R.; Wargo, J.A. Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science, 2018, 359(6371), 97-103.
[http://dx.doi.org/10.1126/science.aan4236] [PMID: 29097493]
[141]
Matson, V.; Fessler, J.; Bao, R.; Chongsuwat, T.; Zha, Y.; Alegre, M.L.; Luke, J.J.; Gajewski, T.F. The commensal microbiome is associated with anti–PD-1 efficacy in metastatic melanoma patients. Science, 2018, 359(6371), 104-108.
[http://dx.doi.org/10.1126/science.aao3290] [PMID: 29302014]
[142]
Zitvogel, L.; Ma, Y.; Raoult, D.; Kroemer, G.; Gajewski, T.F. The microbiome in cancer immunotherapy: Diagnostic tools and therapeutic strategies. Science, 2018, 359(6382), 1366-1370.
[http://dx.doi.org/10.1126/science.aar6918] [PMID: 29567708]
[143]
Wollowski, I.; Rechkemmer, G.; Pool-Zobel, B.L. Protective role of probiotics and prebiotics in colon cancer. Am. J. Clin. Nutr., 2001, 73(2)(Suppl.), 451s-455s.
[http://dx.doi.org/10.1093/ajcn/73.2.451s] [PMID: 11157356]
[144]
Kiela, P.R.; Kuscuoglu, N.; Midura, A.J.; Midura-Kiela, M.T.; Larmonier, C.B.; Lipko, M.; Ghishan, F.K. Molecular mechanism of rat NHE3 gene promoter regulation by sodium butyrate. Am. J. Physiol. Cell Physiol., 2007, 293(1), C64-C74.
[http://dx.doi.org/10.1152/ajpcell.00277.2006] [PMID: 17344314]
[145]
Acharya, M.R.; Sparreboom, A.; Venitz, J.; Figg, W.D. Rational development of histone deacetylase inhibitors as anticancer agents: A review. Mol. Pharmacol., 2005, 68(4), 917-932.
[http://dx.doi.org/10.1124/mol.105.014167] [PMID: 15955865]
[146]
Davie, J.R. Inhibition of histone deacetylase activity by butyrate. J. Nutr., 2003, 133(7)(Suppl.), 2485S-2493S.
[http://dx.doi.org/10.1093/jn/133.7.2485S] [PMID: 12840228]
[147]
Saikali, J.; Picard, C.; Freitas, M.; Holt, P. Fermented milks, probiotic cultures, and colon cancer. Nutr. Cancer, 2004, 49(1), 14-24.
[http://dx.doi.org/10.1207/s15327914nc4901_3] [PMID: 15456631]
[148]
Lan, A.; Lagadic-Gossmann, D.; Lemaire, C.; Brenner, C.; Jan, G. Acidic extracellular pH shifts colorectal cancer cell death from apoptosis to necrosis upon exposure to propionate and acetate, major end-products of the human probiotic propionibacteria. Apoptosis, 2007, 12(3), 573-591.
[http://dx.doi.org/10.1007/s10495-006-0010-3] [PMID: 17195096]
[149]
Perrin, P.; Pierre, F.; Patry, Y.; Champ, M.; Berreur, M.; Pradal, G.; Bornet, F.; Meflah, K.; Menanteau, J. Only fibres promoting a stable butyrate producing colonic ecosystem decrease the rate of aberrant crypt foci in rats. Gut, 2001, 48(1), 53-61.
[http://dx.doi.org/10.1136/gut.48.1.53] [PMID: 11115823]
[150]
Maier, S.; Daroqui, M.C.; Scherer, S.; Roepcke, S.; Velcich, A.; Shenoy, S.M.; Singer, R.H.; Augenlicht, L.H. Butyrate and vitamin D3 induce transcriptional attenuation at the cyclin D1 locus in colonic carcinoma cells. J. Cell. Physiol., 2009, 218(3), 638-642.
[http://dx.doi.org/10.1002/jcp.21642]
[151]
Scharlau, D.; Borowicki, A.; Habermann, N.; Hofmann, T.; Klenow, S.; Miene, C.; Munjal, U.; Stein, K.; Glei, M. Mechanisms of primary cancer prevention by butyrate and other products formed during gut flora-mediated fermentation of dietary fibre. Mutat. Res. Rev. Mutat. Res., 2009, 682(1), 39-53.
[http://dx.doi.org/10.1016/j.mrrev.2009.04.001] [PMID: 19383551]
[152]
Yu, D.C.W.; Waby, J.S.; Chirakkal, H.; Staton, C.A.; Corfe, B.M. Butyrate suppresses expression of neuropilin I in colorectal cell lines through inhibition of Sp1 transactivation. Mol. Cancer, 2010, 9(1), 276.
[http://dx.doi.org/10.1186/1476-4598-9-276] [PMID: 20950431]
[153]
Thangaraju, M.; Cresci, G.A.; Liu, K.; Ananth, S.; Gnanaprakasam, J.P.; Browning, D.D.; Mellinger, J.D.; Smith, S.B.; Digby, G.J.; Lambert, N.A.; Prasad, P.D.; Ganapathy, V. GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res., 2009, 69(7), 2826-2832.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4466] [PMID: 19276343]
[154]
Astbury, S.M.; Corfe, B.M. Uptake and metabolism of the short-chain fatty acid butyrate, a critical review of the literature. Curr. Drug Metab., 2012, 13(6), 815-821.
[http://dx.doi.org/10.2174/138920012800840428] [PMID: 22571479]
[155]
Wang, Z.; Gao, J.; Kan, H.; Huang, Y.; Tang, F.; Li, W.; Yang, F. Resnet for histopathologic cancer detection, the deeper, the better? J. Data Sci. Intell. Syst., 2023.
[http://dx.doi.org/10.47852/bonviewJDSIS3202744]
[156]
Danaee, P.; Ghaeini, R.; Hendrix, D.A. A deep learning approach for cancer detection and relevant gene identification. Pac. Symp. Biocomput., 2017, 22, 219-229.
[http://dx.doi.org/10.1142/9789813207813_0022] [PMID: 27896977]
[157]
Wang, Z.; Lu, H.; Wu, Y.; Ren, S.; Diaty, D.; Fu, Y.; Zou, Y.; Zhang, L.; Wang, Z.; Wang, F.; Li, S.; Huo, X.; Yu, W.; Xu, J.; Ye, Z. Predicting recurrence in osteosarcoma via a quantitative histological image classifier derived from tumour nuclear morphological features. CAAI Trans. Intell. Technol., 2023, 8(3), 836-848.
[http://dx.doi.org/10.1049/cit2.12175]
[158]
Hu, Z.; Tang, J.; Wang, Z.; Zhang, K.; Zhang, L.; Sun, Q. Deep learning for image-based cancer detection and diagnosis: A survey. Pattern Recognit., 2018, 83, 134-149.
[http://dx.doi.org/10.1016/j.patcog.2018.05.014]
[159]
Kumar, V.T.R.P.; Arulselvi, M.; Sastry, K.B.S. Comparative assessment of colon cancer classification using diverse deep learning approaches. J. Data. Sci. Intell. Syst., 2023, 1(2), 128-135.
[http://dx.doi.org/10.47852/bonviewJDSIS32021193]
[160]
Noor, M.N.; Nazir, M.; Ashraf, I.; Almujally, N.A.; Aslam, M.; Fizzah Jilani, S. GastroNet: A robust attention‐based deep learning and cosine similarity feature selection framework for gastrointestinal disease classification from endoscopic images. CAAI Trans. Intell. Technol., 2023, 2023, cit2.12231.
[http://dx.doi.org/10.1049/cit2.12231]
[161]
Chintalapudi, N.; Dhulipalla, V.R.; Battineni, G.; Rucco, C.; Amenta, F. Voice biomarkers for Parkinson’s disease prediction using machine learning models with improved feature reduction techniques. J. Data. Sci. Intell. Syst., 2023, 1(2), 92-98.
[http://dx.doi.org/10.47852/bonviewJDSIS3202831]
[162]
Fatima, M.; Khan, M.A.; Shaheen, S.; Almujally, N.A.; Wang, S.H. B2C3NetF2: Breast cancer classification using an end‐to‐end deep learning feature fusion and satin bowerbird optimization controlled Newton Raphson feature selection. CAAI Trans. Intell. Technol., 2023, 8(4), 1374-1390.
[http://dx.doi.org/10.1049/cit2.12219]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy