Abstract
Background: Hepatocellular carcinoma (HCC) is one of the most intractable tumors in the world due to its high rate of recurrence and heterogeneity.
Aim: The objective of this study was to investigate the role of circular RNA 0102231 (hsa_circ_ 0102231) in the progression of liver cancer.
Methods: In this study, quantitative polymerase chain reaction experiments were performed to quantify the hsa_circ_0102231 level in different liver cancer cell lines. Bioinformatics analysis, as well as a dual-luciferase reporter and RNA pull-down assay, were used to identify putative hsa_circ_ 0102231 downstream targets. Colony formation and CCK8 assays were utilized to examine cell proliferation, whereas Transwell assays were employed to monitor cell migration. Lastly, the role of hsa_circ_0102231 in liver cancer was assessed in a subcutaneous xenograft model.
Results: The expression of hsa_circ_0102231 increased significantly in HepG2 and Huh-7 cells compared with controls, and hsa_circ_0102231 knockdown inhibited cell proliferation and migration in vitro and in vivo. Bioinformatics analysis, as well as a dual-luciferase reporter and RNA pulldown assay, revealed that miR-873 and SOX4 were hsa_circ_0102231 downstream targets. miR-873 inhibition or SOX4 overexpression rescued the proliferation and migration of HepG2 and Huh-7 cells after hsa_circ_0102231 knockdown. Furthermore, SOX4 overexpression reversed the miR-873-induced inhibition of cell migration and proliferation in vitro.
Conclusion: These results show that hsa_circ_0102231 knockdown impedes the progression of liver cancer by regulating the miR-873/SOX4 axis. However, further studies are needed to determine whether hsa_circ_0102231 may be a therapeutic target in liver cancer.
Keywords: Liver cancer, hsa_circ_0102231, miR-873, SOX4, cancer progression.