Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Research Article

Selective Hydrogenation of Furfural into Cyclopentanone Over Composite Metal Catalysts under Mild Conditions

Author(s): Wei Long*, Yaoxu Lin, Yinfei Huang and Zhanhua Su

Volume 11, Issue 4, 2024

Published on: 27 June, 2024

Page: [379 - 387] Pages: 9

DOI: 10.2174/0122133461310054240621072150

Price: $65

conference banner
Abstract

Background/Introduction: The direct hydrogenate conversion of furfural to cyclopentanone is very interesting technology in biomass conversion and utilization. Many kinds of metal catalysts were used in this field, and composite metal catalysts exhibited superior catalytic performance. The hydrogenation process and rearrangement of the furan ring are competitive, polymerization of furfural can prevent the improvement of yield for the main product.

Objective: Efficient and high selective catalyst need to be prepared for the improvement the yield of cyclopentanone from hydrogenate conversion of furfural under mild conditions.

Methods: Preparation of many composite metal catalysts and catalytic test for the direct hydrogenate conversion of furfural to cyclopentanone. Characterization is chosen to explore the strong metal synergistic effect and micro react mechanism.

Results: MCM-41 was chosen as the carrier, and both WO3 and TiO2 were selected as the modifiable assistant, Ru-Cu-WO3@TiO2-MCM-41 were prepared successfully and performed a strong metal synergistic effect in this reaction. The 2%Ru-5%Cu-4%WO3@TiO2-MCM-41 exhibited a 98.54% yield of cyclopentanone when water was chosen as solvent and good stability was found in the recycle tests in mild conditions.

Conclusion: A certain amount of WO3 is helpful to enhance the Ru and Cu atoms’ dispersion and the number of acidic sites on the surface of nano catalyst, which may weaken the cracking of C-C bonds and improved the yield of cyclopentanone in mild conditions. A certain amount of TiO2- anatase species adjusted the textural properties of the carrier and show good synergism catalytic function. The best catalytic hydrogenation conversion of furfural was high at 99.75%, and the best selectivity to cyclopentanone was high at 98.79% over 2%Ru-5%Cu-4%WO3@TiO2-MCM-41 catalyst under mild conditions.

Keywords: Hydrogenation, furfural, cyclopentanone, tungsten oxide, TiO2-MCM-41, catalyst.

Graphical Abstract
[1]
Vispute, T.P.; Zhang, H.; Sanna, A.; Xiao, R.; Huber, G.W. Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils. Science, 2010, 330(6008), 1222-1227.
[http://dx.doi.org/10.1126/science.1194218] [PMID: 21109668]
[2]
Huber, G.W.; Iborra, S.; Corma, A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chem. Rev., 2006, 106(9), 4044-4098.
[http://dx.doi.org/10.1021/cr068360d] [PMID: 16967928]
[3]
Pagliaro, M.; Ciriminna, R.; Kimura, H.; Rossi, M.; Della Pina, C. From glycerol to value‐added products. Angew. Chem. Int. Ed., 2007, 46(24), 4434-4440.
[http://dx.doi.org/10.1002/anie.200604694]
[4]
Taylor, M.J.; Durndell, L.J.; Isaacs, M.A.; Parlett, C.M.A.; Wilson, K.; Lee, A.F.; Kyriakou, G. Highly selective hydrogenation of furfural over supported Pt nanoparticles under mild conditions. Appl. Catal. B, 2016, 180, 580-585.
[http://dx.doi.org/10.1016/j.apcatb.2015.07.006]
[5]
Zhang, C.; Lai, Q.; Holles, J.H. Bimetallic overlayer catalysts with high selectivity and reactivity for furfural hydrogenation. Catal. Commun., 2017, 89, 77-80.
[http://dx.doi.org/10.1016/j.catcom.2016.10.023]
[6]
Gong, W.; Chen, C.; Zhang, Y.; Zhou, H.; Wang, H.; Zhang, H.; Zhang, Y.; Wang, G.; Zhao, H. Efficient synthesis of furfuryl alcohol from H2-hydrogenation/transfer hydrogenation of furfural using sulfonate group modified Cu catalyst. ACS Sustain. Chem.& Eng., 2017, 5(3), 2172-2180.
[http://dx.doi.org/10.1021/acssuschemeng.6b02343]
[7]
Koppadi, K.S.; Chada, R.R.; Enumula, S.S.; Marella, R.K.; Kamaraju, S.R.R.; Burri, D.R. Metal-free hydrogenation of biomass derived furfural into furfuryl alcohol over carbon–MgO catalysts in continuous mode. Catal. Lett., 2017, 147(5), 1278-1284.
[http://dx.doi.org/10.1007/s10562-017-2035-3]
[8]
Du, H.; Ma, X.; Jiang, M.; Yan, P.; Conrad Zhang, Z. Highly efficient Cu/SiO2 catalyst derived from ethanolamine modification for furfural hydrogenation. Appl. Catal. A Gen., 2020, 598, 117598-117606.
[http://dx.doi.org/10.1016/j.apcata.2020.117598]
[9]
Seo, G.; Chon, H. Hydrogenation of furfural over copper-containing catalysts. J. Catal., 1981, 67(2), 424-429.
[http://dx.doi.org/10.1016/0021-9517(81)90302-X]
[10]
Yuan, Q.; Zhang, D.; Haandel, L.; Ye, F.; Xue, T.; Hensen, E.J.M.; Guan, Y. Selective liquid phase hydrogenation of furfural to furfuryl alcohol by Ru/Zr-MOFs. J. Mol. Catal. Chem., 2015, 406, 58-64.
[http://dx.doi.org/10.1016/j.molcata.2015.05.015]
[11]
Belskaya, O.B.; Mironenko, R.M.; Gulyaeva, T.I.; Trenikhin, M.V.; Muromtsev, I.V.; Trubina, S.V.; Zvereva, V.V.; Likholobov, V.A. Catalysts derived from nickel-containing layered double hydroxides for aqueous-phase furfural hydrogenation. Catalysts, 2022, 12(6), 598-607.
[http://dx.doi.org/10.3390/catal12060598]
[12]
Renz, M. Ketonization of carboxylic acids by decarboxylation: Mechanism and scope. Eur. J. Org. Chem., 2005, 2005(6), 979-988.
[http://dx.doi.org/10.1002/ejoc.200400546]
[13]
Yang, Y.; Du, Z.; Huang, Y.; Lu, F.; Wang, F.; Gao, J.; Xu, J. Conversion of furfural into cyclopentanone over Ni–Cu bimetallic catalysts. Green Chem., 2013, 15(7), 1932-1940.
[http://dx.doi.org/10.1039/c3gc37133f]
[14]
Hronec, M.; Fulajtarov, K.; Liptaj, T. Effect of catalyst and solvent on the furan ring rearrangement to cyclopentanone. Appl. Catal. A., 2012, 437–438, 104-111.
[15]
Li, X.L. Selective conversion of furfural to cyclopentanone or cyclopentanol using different preparation methods of Cu–Co catalysts. Green Chem., 2015, 17(2), 1038-1046.
[http://dx.doi.org/10.1039/C4GC01601G]
[16]
Zhou, M.; Zhu, H.; Niu, L.; Xiao, G.; Xiao, R. Catalytic hydroprocessing of furfural to cyclopentanol over Ni/CNTs catalysts: Model reaction for upgrading of bio-oil. Catal. Lett., 2014, 144(2), 235-241.
[http://dx.doi.org/10.1007/s10562-013-1149-5]
[17]
Guo, J.; Xu, G.; Han, Z.; Zhang, Y.; Fu, Y.; Guo, Q. Selective conversion of furfural to cyclopentanone with CuZnAl catalysts. ACS Sustain. Chem.& Eng., 2014, 2(10), 2259-2266.
[http://dx.doi.org/10.1021/sc5003566]
[18]
Hronec, M.; Fulajtárova, K.; Mičušik, M. Influence of furanic polymers on selectivity of furfural rearrangement to cyclopentanone. Appl. Catal. A Gen., 2013, 468, 426-431.
[http://dx.doi.org/10.1016/j.apcata.2013.08.052]
[19]
Wang, Y.; Zhao, D.; Rodríguez-Padrón, D.; Len, C. Recent advances in catalytic hydrogenation of furfural. Catalysts, 2019, 9(10), 796-803.
[http://dx.doi.org/10.3390/catal9100796]
[20]
Herrear, C.; Fuentealba, D.; Ghampson, I.T. Selective conversion of biomass-derived furfural to cyclopentanone over carbon nanotube-supported Ni catalyst in Pickering emulsions. Catal. Commun., 2020, 144, 106092.
[http://dx.doi.org/10.1016/j.catcom.2020.106092]
[21]
Liu, Z.; Tong, X.; Liu, J.; Xue, S. A smart catalyst system for the valorization of renewable furfural in aliphatic alcohols. Catal. Sci. Technol., 2016, 6(4), 1214-1221.
[http://dx.doi.org/10.1039/C5CY01195G]
[22]
Gao, X.; Ding, Y.; Peng, L.; Yang, D.; Wan, X.; Zhou, C.; Liu, W.; Dai, Y.; Yang, Y. On the effect of zeolite acid property and reaction pathway in Pd–catalyzed hydrogenation of furfural to cyclopentanone. Fuel, 2022, 314, 123074-123082.
[http://dx.doi.org/10.1016/j.fuel.2021.123074]
[23]
Huang, L.; Hao, F.; Lv, Y.; Liu, Y.; Liu, P.; Xiong, W.; Luo, H. MOF-derived well-structured bimetallic catalyst for highly selective conversion of furfural. Fuel, 2021, 289, 119910-119923.
[http://dx.doi.org/10.1016/j.fuel.2020.119910]
[24]
Zhang, T.; Li, W.; Xu, Z.; Liu, Q.; Ma, Q.; Jameel, H.; Chang, H.; Ma, L. Catalytic conversion of xylose and corn stalk into furfural over carbon solid acid catalyst in γ-valerolactone. Bioresour. Technol., 2016, 209, 108-114.
[http://dx.doi.org/10.1016/j.biortech.2016.02.108] [PMID: 26967333]
[25]
Long, W.; Hao, F.; Xiong, W.; Liu, P.; Luo, H. Modified sepiolite supported nickel and tungsten oxide catalysts for glycerol hydrogenolysis to 1,2-propanediol with high selectivity under mild conditions. React. Kinet. Mech. Catal., 2017, 122(1), 85-100.
[http://dx.doi.org/10.1007/s11144-017-1194-y]
[26]
Kumar, D.; Schumacher, K.; Hohenesch, C.D.F.V. MCM-41, MCM-48 and related mesoporous adsorbents: Their synthesis and characterisation. Coll. Sur-A. Phys. Eng. Asp., 2001, 187, 109-116.
[http://dx.doi.org/10.1016/S0927-7757(01)00638-0]
[27]
Marzouqa, D.M.; Zughul, M.B.; Taha, M.O.; Hodali, H.A. Effect of particle morphology and pore size on the release kinetics of ephedrine from mesoporous MCM-41 materials. J. Porous Mater., 2012, 19(5), 825-833.
[http://dx.doi.org/10.1007/s10934-011-9537-y]
[28]
Alzamly, A.; Hamed, F.; Ramachandran, T.; Bakiro, M.; Ahmed, S.H.; Mansour, S.; Salem, S.; Abdul al, K.; Al Kaabi, N.S.; Meetani, M.; Khaleel, A. Tunable band gap of Bi3+ doped anatase TiO2 for enhanced photocatalytic removal of acetaminophen under UV-visible light irradiation. J. Water Reuse Desalin., 2019, 9(1), 31-46.
[http://dx.doi.org/10.2166/wrd.2018.021]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy