Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Exploring Genetic Silencing: RNAi and CRISPR-Cas Potential against Drug Resistance in Malaria

Author(s): Carlos Gaona-Lopez* and Gildardo Rivera*

Volume 25, Issue 2, 2025

Published on: 21 June, 2024

Page: [128 - 137] Pages: 10

DOI: 10.2174/0113895575306957240610102626

Price: $65

Abstract

Malaria has been one of the most lethal infectious diseases throughout history, claiming a high number of human lives. The genomic plasticity of Plasmodium falciparum, the causative agent of the most severe and deadly form of malaria, gives the parasite a constant resistance to drugs developed for its control. Despite efforts to control and even eradicate the disease, these have largely been unsuccessful due to the parasite's continuous adaptations. This study aims to examine the key genes involved in parasite resistance and propose a shift in the combat strategy. Gene silencing techniques offer promise in combating malaria, yet further research is needed to harness their potential for disease control fully. Although there is still a long way to go for the implementation of gene silencing-based therapeutic strategies, this review addresses examples of the use of such techniques in various human diseases and how they could be extrapolated for malaria treatment.

Keywords: Malaria, Plasmodium falciparum, drug resistance, genes, RNAi, CRISPR-Cas9.

Graphical Abstract
[1]
Cox, F.E.G. History of the discovery of the malaria parasites and their vectors. Parasit. Vectors, 2010, 3(1), 5.
[http://dx.doi.org/10.1186/1756-3305-3-5] [PMID: 20205846]
[2]
Joy, D.A.; Feng, X.; Mu, J.; Furuya, T.; Chotivanich, K.; Krettli, A.U.; Ho, M.; Wang, A.; White, N.J.; Suh, E.; Beerli, P.; Su, X. Early origin and recent expansion of Plasmodium falciparum. Science, 2003, 300(5617), 318-321.
[http://dx.doi.org/10.1126/science.1081449] [PMID: 12690197]
[3]
Timmermann, A.; Friedrich, T. Late Pleistocene climate drivers of early human migration. Nature, 2016, 538(7623), 92-95.
[http://dx.doi.org/10.1038/nature19365] [PMID: 27654920]
[4]
World Health Organization. Global Malaria Programme. World malaria report 2021. 2021. Available From: https://www.who.int/teams/global-malariaprogramme/reports/world-malaria-report-2021
[5]
Milner, D.A., Jr Malaria pathogenesis. Cold Spring Harb. Perspect. Med., 2018, 8(1), a025569.
[http://dx.doi.org/10.1101/cshperspect.a025569] [PMID: 28533315]
[6]
World Health Organization. The top 10 causes of death. Available From: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
[7]
Sinka, M.E.; Bangs, M.J.; Manguin, S.; Rubio-Palis, Y.; Chareonviriyaphap, T.; Coetzee, M.; Mbogo, C.M.; Hemingway, J.; Patil, A.P.; Temperley, W.H.; Gething, P.W.; Kabaria, C.W.; Burkot, T.R.; Harbach, R.E.; Hay, S.I. A global map of dominant malaria vectors. Parasit. Vectors, 2012, 5(1), 69.
[http://dx.doi.org/10.1186/1756-3305-5-69] [PMID: 22475528]
[8]
Molina-Cruz, A.; Zilversmit, M.M.; Neafsey, D.E.; Hartl, D.L.; Barillas-Mury, C. Mosquito vectors and the globalization of Plasmodium falciparum malaria. Annu. Rev. Genet., 2016, 50(1), 447-465.
[http://dx.doi.org/10.1146/annurev-genet-120215-035211] [PMID: 27732796]
[9]
Aschar, M.; Levi, J.E.; Farinas, M.L.R.N.; Montebello, S.C.; Mendrone-Junior, A.; Di Santi, S.M. The hidden Plasmodium malariae in blood donors: A risk coming from areas of low transmission of malaria. Rev. Inst. Med. Trop. São Paulo, 2020, 62, e100.
[http://dx.doi.org/10.1590/s1678-9946202062100] [PMID: 33331519]
[10]
Del Castillo Calderón, J.G.; Cárdenas Silva, A.M. Malaria congénita por Plasmodium falciparum. Rev. Chil. Pediatr., 2020, 91(5), 749-753.
[http://dx.doi.org/10.32641/rchped.v91i5.1283] [PMID: 33399640]
[11]
Meibalan, E.; Marti, M. Biology of Malaria Transmission. Cold Spring Harb. Perspect. Med., 2017, 7(3), a025452.
[http://dx.doi.org/10.1101/cshperspect.a025452] [PMID: 27836912]
[12]
Dorn, A.; Vippagunta, S.R.; Matile, H.; Jaquet, C.; Vennerstrom, J.L.; Ridley, R.G. An assessment of drug-haematin binding as a mechanism for inhibition of haematin polymerisation by quinoline antimalarials. Biochem. Pharmacol., 1998, 55(6), 727-736.
[http://dx.doi.org/10.1016/S0006-2952(97)00510-8] [PMID: 9586944]
[13]
Combrinck, J.M.; Mabotha, T.E.; Ncokazi, K.K.; Ambele, M.A.; Taylor, D.; Smith, P.J.; Hoppe, H.C.; Egan, T.J. Insights into the role of heme in the mechanism of action of antimalarials. ACS Chem. Biol., 2013, 8(1), 133-137.
[http://dx.doi.org/10.1021/cb300454t] [PMID: 23043646]
[14]
Tang, Y.Q.; Ye, Q.; Huang, H.; Zheng, W.Y. An overview of available antimalarials: Discovery, mode of action and drug resistance. Curr. Mol. Med., 2020, 20(8), 583-592.
[http://dx.doi.org/10.2174/1566524020666200207123253] [PMID: 32031068]
[15]
Hill, D.R.; Ryan, E.T.; Parise, M.; Magill, A.J.; Lewis, L.S.; Baird, J.K. Primaquine: Report from CDC expert meeting on malaria chemoprophylaxis I. Am. J. Trop. Med. Hyg., 2006, 75(3), 402-415.
[http://dx.doi.org/10.4269/ajtmh.2006.75.402] [PMID: 16968913]
[16]
Bonilla-Ramírez, L.; Galiano, S.; Quiliano, M.; Aldana, I.; Pabón, A. Primaquine–quinoxaline 1,4-di-N-oxide hybrids with action on the exo-erythrocytic forms of Plasmodium induce their effect by the production of reactive oxygen species. Malar. J., 2019, 18(1), 201.
[http://dx.doi.org/10.1186/s12936-019-2825-8] [PMID: 31217011]
[17]
Egwu, C.O.; Tsamesidis, I.; Pério, P.; Augereau, J.M.; Benoit-Vical, F.; Reybier, K. Superoxide: A major role in the mechanism of action of essential antimalarial drugs. Free Radic. Biol. Med., 2021, 167, 271-275.
[http://dx.doi.org/10.1016/j.freeradbiomed.2021.03.001] [PMID: 33722628]
[18]
Dembélé, L.; Franetich, J.F.; Soulard, V.; Amanzougaghene, N.; Tajeri, S.; Bousema, T.; van Gemert, G.J.; Le Grand, R.; Dereuddre-Bosquet, N.; Baird, J.K.; Mazier, D.; Snounou, G. Chloroquine potentiates primaquine activity against active and latent hepatic plasmodia ex vivo: Potentials and pitfalls. Antimicrob. Agents Chemother., 2020, 65(1), e01416-20.
[http://dx.doi.org/10.1128/AAC.01416-20] [PMID: 33077656]
[19]
Ross, L.S.; Fidock, D.A. Elucidating mechanisms of drug-resistant Plasmodium falciparum. Cell Host Microbe, 2019, 26(1), 35-47.
[http://dx.doi.org/10.1016/j.chom.2019.06.001] [PMID: 31295423]
[20]
Wong, W.; Bai, X.C.; Sleebs, B.E.; Triglia, T.; Brown, A.; Thompson, J.K.; Jackson, K.E.; Hanssen, E.; Marapana, D.S.; Fernandez, I.S.; Ralph, S.A.; Cowman, A.F.; Scheres, S.H.W.; Baum, J. Mefloquine targets the Plasmodium falciparum 80s ribosome to inhibit protein synthesis. Nat. Microbiol., 2017, 2(6), 17031.
[http://dx.doi.org/10.1038/nmicrobiol.2017.31] [PMID: 28288098]
[21]
Windle, S.T.; Lane, K.D.; Gadalla, N.B.; Liu, A.; Mu, J.; Caleon, R.L.; Rahman, R.S.; Sá, J.M.; Wellems, T.E. Evidence for linkage of pfmdr1, pfcrt, and pfk13 polymorphisms to lumefantrine and mefloquine susceptibilities in a Plasmodium falciparum cross. Int. J. Parasitol. Drugs Drug Resist., 2020, 14, 208-217.
[http://dx.doi.org/10.1016/j.ijpddr.2020.10.009] [PMID: 33197753]
[22]
Meshnick, S.R.; Alker, A.P. Amodiaquine and combination chemotherapy for malaria. Am. J. Trop. Med. Hyg., 2005, 73(5), 821-823.
[http://dx.doi.org/10.4269/ajtmh.2005.73.821] [PMID: 16282286]
[23]
Osei-Akoto, A.; Orton, L.C.; Owusu-Ofori, S. Atovaquone-proguanil for treating uncomplicated malaria. Cochrane Libr., 2005, 2005(4), CD004529.
[http://dx.doi.org/10.1002/14651858.CD004529.pub2] [PMID: 16235366]
[24]
Mounkoro, P.; Michel, T.; Meunier, B. Revisiting the mode of action of the antimalarial proguanil using the yeast model. Biochem. Biophys. Res. Commun., 2021, 534, 94-98.
[http://dx.doi.org/10.1016/j.bbrc.2020.12.004] [PMID: 33316545]
[25]
Olliaro, P. Mode of action and mechanisms of resistance for antimalarial drugs. Pharmacol. Ther., 2001, 89(2), 207-219.
[http://dx.doi.org/10.1016/S0163-7258(00)00115-7] [PMID: 11316521]
[26]
Dahl, E.L.; Rosenthal, P.J. Multiple antibiotics exert delayed effects against the Plasmodium falciparum apicoplast. Antimicrob. Agents Chemother., 2007, 51(10), 3485-3490.
[http://dx.doi.org/10.1128/AAC.00527-07] [PMID: 17698630]
[27]
Dharia, N.V.; Plouffe, D.; Bopp, S.E.R.; González-Páez, G.E.; Lucas, C.; Salas, C.; Soberon, V.; Bursulaya, B.; Kochel, T.J.; Bacon, D.J.; Winzeler, E.A. Genome scanning of Amazonian Plasmodium falciparum shows subtelomeric instability and clindamycin-resistant parasites. Genome Res., 2010, 20(11), 1534-1544.
[http://dx.doi.org/10.1101/gr.105163.110] [PMID: 20829224]
[28]
Meshnick, S.R. Artemisinin: Mechanisms of action, resistance and toxicity. Int. J. Parasitol., 2002, 32(13), 1655-1660.
[http://dx.doi.org/10.1016/S0020-7519(02)00194-7] [PMID: 12435450]
[29]
Woodley, C.M.; Amado, P.S.M.; Cristiano, M.L.S.; O’Neill, P.M. Artemisinin inspired synthetic endoperoxide drug candidates: Design, synthesis, and mechanism of action studies. Med. Res. Rev., 2021, 41(6), 3062-3095.
[http://dx.doi.org/10.1002/med.21849] [PMID: 34355414]
[30]
Hanboonkunupakarn, B.; White, N.J. Advances and roadblocks in the treatment of malaria. Br. J. Clin. Pharmacol., 2022, 88(2), 374-382.
[http://dx.doi.org/10.1111/bcp.14474] [PMID: 32656850]
[31]
Sinha, S.; Medhi, B.; Sehgal, R. Challenges of drug-resistant malaria. Parasite, 2014, 21, 61.
[http://dx.doi.org/10.1051/parasite/2014059] [PMID: 25402734]
[32]
Plowe, C.V. Malaria chemoprevention and drug resistance: A review of the literature and policy implications. Malar. J., 2022, 21(1), 104.
[http://dx.doi.org/10.1186/s12936-022-04115-8] [PMID: 35331231]
[33]
Amelo, W.; Makonnen, E. Efforts made to eliminate drug-resistant malaria and its challenges. BioMed Res. Int., 2021, 2021, 1-12.
[http://dx.doi.org/10.1155/2021/5539544] [PMID: 34497848]
[34]
Padma, T.V. Can malaria researchers slow the spread of drug resistance? Nature, 2023, 618(7967), S26-S28.
[http://dx.doi.org/10.1038/d41586-023-02052-3] [PMID: 37380680]
[35]
Kumar, N.; Cha, G.; Pineda, F.; Maciel, J.; Haddad, D.; Bhattacharyya, M.; Nagayasu, E. Molecular complexity of sexual development and gene regulation in Plasmodium falciparum. Int. J. Parasitol., 2004, 34(13-14), 1451-1458.
[http://dx.doi.org/10.1016/j.ijpara.2004.10.013] [PMID: 15582522]
[36]
Feng, X.; Carlton, J.M.; Joy, D.A.; Mu, J.; Furuya, T.; Suh, B.B.; Wang, Y.; Barnwell, J.W.; Su, X.Z. Single-nucleotide polymorphisms and genome diversity in Plasmodium vivax. Proc. Natl. Acad. Sci. USA, 2003, 100(14), 8502-8507.
[http://dx.doi.org/10.1073/pnas.1232502100] [PMID: 12799466]
[37]
Zhang, X.; Deitsch, K.W.; Kirkman, L.A. The contribution of extrachromosomal DNA to genome plasticity in malaria parasites. Mol. Microbiol., 2021, 115(4), 503-507.
[http://dx.doi.org/10.1111/mmi.14632] [PMID: 33103309]
[38]
Costa, G.L.; Amaral, L.C.; Fontes, C.J.F.; Carvalho, L.H.; de Brito, C.F.A.; de Sousa, T.N. Assessment of copy number variation in genes related to drug resistance in Plasmodium vivax and Plasmodium falciparum isolates from the Brazilian Amazon and a systematic review of the literature. Malar. J., 2017, 16(1), 152.
[http://dx.doi.org/10.1186/s12936-017-1806-z] [PMID: 28420389]
[39]
Bakhiet, A.M.A.; Abdelraheem, M.H.; Kheir, A.; Omer, S.; Gismelseed, L.; Abdel-Muhsin, A.M.A.; Naiem, A.; Al Hosni, A.; Al Dhuhli, A.; Al Rubkhi, M.; Al-Hamidhi, S.; Gadalla, A.; Mukhtar, M.; Sultan, A.A.; Babiker, H.A. Evolution of Plasmodium falciparum drug resistance genes following artemisinin combination therapy in Sudan. Trans. R. Soc. Trop. Med. Hyg., 2019, 113(11), 693-700.
[http://dx.doi.org/10.1093/trstmh/trz059] [PMID: 31369106]
[40]
Price, R.N.; Uhlemann, A.C.; Brockman, A.; McGready, R.; Ashley, E.; Phaipun, L.; Patel, R.; Laing, K.; Looareesuwan, S.; White, N.J.; Nosten, F.; Krishna, S. Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number. Lancet, 2004, 364(9432), 438-447.
[http://dx.doi.org/10.1016/S0140-6736(04)16767-6] [PMID: 15288742]
[41]
Lim, P.; Alker, A.P.; Khim, N.; Shah, N.K.; Incardona, S.; Doung, S.; Yi, P.; Bouth, D.M.; Bouchier, C.; Puijalon, O.M.; Meshnick, S.R.; Wongsrichanalai, C.; Fandeur, T.; Le Bras, J.; Ringwald, P.; Ariey, F. Pfmdr1 copy number and arteminisin derivatives combination therapy failure in falciparum malaria in Cambodia. Malar. J., 2009, 8(1), 11.
[http://dx.doi.org/10.1186/1475-2875-8-11] [PMID: 19138391]
[42]
Li, J.; Chen, J.; Xie, D.; Monte-Nguba, S.; Eyi, J.U.M.; Matesa, R.A.; Obono, M.M.O.; Ehapo, C.S.; Yang, L.; Lu, D.; Yang, H.; Yang, H.T.; Lin, M. High prevalence of pfmdr1 N86Y and Y184F mutations in Plasmodium falciparum isolates from Bioko island, Equatorial Guinea. Pathog. Glob. Health, 2014, 108(7), 339-343.
[http://dx.doi.org/10.1179/2047773214Y.0000000158] [PMID: 25348116]
[43]
Lekana-Douki, J.B.; Boutamba, S.D.D.; Zatra, R.; Edou, S.E.Z.; Ekomy, H.; Bisvigou, U.; Toure-Ndouo, F.S. Increased prevalence of the Plasmodium falciparum Pfmdr1 86N genotype among field isolates from Franceville, Gabon after replacement of chloroquine by artemether–lumefantrine and artesunate–mefloquine. Infect. Genet. Evol., 2011, 11(2), 512-517.
[http://dx.doi.org/10.1016/j.meegid.2011.01.003] [PMID: 21251998]
[44]
Kayode, A.T.; Akano, K.; Ajogbasile, F.V.; Uwanibe, J.N.; Oluniyi, P.E.; Bankole, B.E.; Eromon, P.J.; Sowunmi, A.; Folarin, O.A.; Volkman, S.K.; McInnis, B.; Sabeti, P.; Wirth, D.F.; Happi, C.T. Polymorphisms in Plasmodium falciparum chloroquine resistance transporter (Pfcrt) and multidrug-resistant gene 1 (Pfmdr-1) in Nigerian children 10 years post-adoption of artemisinin-based combination treatments. Int. J. Parasitol., 2021, 51(4), 301-310.
[http://dx.doi.org/10.1016/j.ijpara.2020.10.001] [PMID: 33359205]
[45]
Wicht, K.J.; Mok, S.; Fidock, D.A. Molecular mechanisms of drug resistance in Plasmodium falciparum malaria. Annu. Rev. Microbiol., 2020, 74(1), 431-454.
[http://dx.doi.org/10.1146/annurev-micro-020518-115546] [PMID: 32905757]
[46]
Fidock, D.A.; Nomura, T.; Talley, A.K.; Cooper, R.A.; Dzekunov, S.M.; Ferdig, M.T.; Ursos, L.M.B. bir Singh Sidhu, A.; Naudé, B.; Deitsch, K.W.; Su, X.; Wootton, J.C.; Roepe, P.D.; Wellems, T.E. Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol. Cell, 2000, 6(4), 861-871.
[http://dx.doi.org/10.1016/S1097-2765(05)00077-8] [PMID: 11090624]
[47]
Dhingra, S.K.; Redhi, D.; Combrinck, J.M.; Yeo, T.; Okombo, J.; Henrich, P.P.; Cowell, A.N.; Gupta, P.; Stegman, M.L.; Hoke, J.M.; Cooper, R.A.; Winzeler, E.; Mok, S.; Egan, T.J.; Fidock, D.A. A variant PfCRT isoform can contribute to Plasmodium falciparum resistance to the first-line partner drug piperaquine. MBio, 2017, 8(3), e00303-17.
[http://dx.doi.org/10.1128/mBio.00303-17] [PMID: 28487425]
[48]
Yuthavong, Y.; Kamchonwongpaisan, S.; Leartsakulpanich, U.; Chitnumsub, P. Folate metabolism as a source of molecular targets for antimalarials. Future Microbiol., 2006, 1(1), 113-125.
[http://dx.doi.org/10.2217/17460913.1.1.113] [PMID: 17661690]
[49]
Kronenberger, T.; Schettert, I.; Wrenger, C. Targeting the vitamin biosynthesis pathways for the treatment of malaria. Future Med. Chem., 2013, 5(7), 769-779.
[http://dx.doi.org/10.4155/fmc.13.43] [PMID: 23651091]
[50]
Pethrak, C.; Posayapisit, N.; Pengon, J.; Suwanakitti, N.; Saeung, A.; Shorum, M.; Aupalee, K.; Taai, K.; Yuthavong, Y.; Kamchonwongpaisan, S.; Jupatanakul, N. New insights into antimalarial chemopreventive activity of antifolates. Antimicrob. Agents Chemother., 2022, 66(2), e01538-21.
[http://dx.doi.org/10.1128/aac.01538-21] [PMID: 34930029]
[51]
Jiang, T.; Chen, J.; Fu, H.; Wu, K.; Yao, Y.; Eyi, J.U.M.; Matesa, R.A.; Obono, M.M.O.; Du, W.; Tan, H.; Lin, M.; Li, J. High prevalence of pfdhfr–pfdhps quadruple mutations associated with sulfadoxine–pyrimethamine resistance in Plasmodium falciparum isolates from Bioko Island, Equatorial Guinea. Malar. J., 2019, 18(1), 101.
[http://dx.doi.org/10.1186/s12936-019-2734-x] [PMID: 30914041]
[52]
Yan, H.; Feng, J.; Yin, J.; Huang, F.; Kong, X.; Lin, K.; Zhang, T.; Feng, X.; Zhou, S.; Cao, J.; Xia, Z. High frequency mutations in pfdhfr and pfdhps of plasmodium falciparum in response to sulfadoxine-pyrimethamine: A cross-sectional survey in returning Chinese migrants from Africa. Front. Cell. Infect. Microbiol., 2021, 11, 673194.
[http://dx.doi.org/10.3389/fcimb.2021.673194] [PMID: 34568082]
[53]
Esu, E.; Tacoli, C.; Gai, P.; Berens-Riha, N.; Pritsch, M.; Loescher, T.; Meremikwu, M. Prevalence of the Pfdhfr and Pfdhps mutations among asymptomatic pregnant women in Southeast Nigeria. Parasitol. Res., 2018, 117(3), 801-807.
[http://dx.doi.org/10.1007/s00436-018-5754-5] [PMID: 29332155]
[54]
Madkhali, A.M.; Al-Mekhlafi, H.M.; Atroosh, W.M.; Ghzwani, A.H.; Zain, K.A.; Abdulhaq, A.A.; Ghailan, K.Y.; Anwar, A.A.; Eisa, Z.M. Increased prevalence of pfdhfr and pfdhps mutations associated with sulfadoxine–pyrimethamine resistance in Plasmodium falciparum isolates from Jazan Region, Southwestern Saudi Arabia: Important implications for malaria treatment policy. Malar. J., 2020, 19(1), 446.
[http://dx.doi.org/10.1186/s12936-020-03524-x] [PMID: 33267841]
[55]
Srisutham, S.; Madmanee, W.; Kouhathong, J.; Sutawong, K.; Tripura, R.; Peto, T.J.; van der Pluijm, R.W.; Callery, J.J.; Dysoley, L.; Mayxay, M.; Newton, P.N.; Pongvongsa, T.; Hongvanthong, B.; Day, N.P.J.; White, N.J.; Dondorp, A.M.; Imwong, M. Ten-year persistence and evolution of Plasmodium falciparum antifolate and anti-sulfonamide resistance markers pfdhfr and pfdhps in three Asian countries. PLoS One, 2022, 17(12), e0278928.
[http://dx.doi.org/10.1371/journal.pone.0278928] [PMID: 36525403]
[56]
Bosia, A.; Ghigo, D.; Turrini, F.; Nissani, E.; Pescarmona, G.P.; Ginsburg, H. Kinetic characterization of Na +/H + antiport of Plasmodium falciparum membrane. J. Cell. Physiol., 1993, 154(3), 527-534.
[http://dx.doi.org/10.1002/jcp.1041540311] [PMID: 8382209]
[57]
Henry, M.; Briolant, S.; Zettor, A.; Pelleau, S.; Baragatti, M.; Baret, E.; Mosnier, J.; Amalvict, R.; Fusai, T.; Rogier, C.; Pradines, B. Plasmodium falciparum Na+/H+ exchanger 1 transporter is involved in reduced susceptibility to quinine. Antimicrob. Agents Chemother., 2009, 53(5), 1926-1930.
[http://dx.doi.org/10.1128/AAC.01243-08] [PMID: 19273668]
[58]
Cheruiyot, J.; Ingasia, L.A.; Omondi, A.A.; Juma, D.W.; Opot, B.H.; Ndegwa, J.M.; Mativo, J.; Cheruiyot, A.C.; Yeda, R.; Okudo, C.; Muiruri, P.; Bidii, N.S.; Chebon, L.J.; Angienda, P.O.; Eyase, F.L.; Johnson, J.D.; Bulimo, W.D.; Andagalu, B.; Akala, H.M.; Kamau, E. Polymorphisms in Pfmdr1, Pfcrt, and Pfnhe1 genes are associated with reduced in vitro activities of quinine in Plasmodium falciparum isolates from western Kenya. Antimicrob. Agents Chemother., 2014, 58(7), 3737-3743.
[http://dx.doi.org/10.1128/AAC.02472-14] [PMID: 24752268]
[59]
Wu, K.; Yao, Y.; Chen, F.; Xu, M.; Lu, G.; Jiang, T.; Liu, Z.; Du, W.; Li, F.; Li, R.; Tan, H.; Li, J. Analysis of Plasmodium falciparum Na+/H+ exchanger (pfnhe1) polymorphisms among imported African malaria parasites isolated in Wuhan, Central China. BMC Infect. Dis., 2019, 19(1), 354.
[http://dx.doi.org/10.1186/s12879-019-3921-7] [PMID: 31035938]
[60]
Sharma, S.; Ali, M.E. How do the mutations in Pf K13 protein promote anti-malarial drug resistance? J. Biomol. Struct. Dyn., 2023, 41(15), 7329-7338.
[http://dx.doi.org/10.1080/07391102.2022.2120539] [PMID: 36153000]
[61]
Si, W.; Zhao, Y.; Qin, X.; Huang, Y.; Yu, J.; Liu, X.; Li, Y.; Yan, X.; Zhang, Q.; Sun, J. What exactly does the PfK13 C580Y mutation in Plasmodium falciparum influence? Parasit. Vectors, 2023, 16(1), 421.
[http://dx.doi.org/10.1186/s13071-023-06024-4] [PMID: 37974285]
[62]
Birnbaum, J.; Scharf, S.; Schmidt, S.; Jonscher, E.; Hoeijmakers, W.A.M.; Flemming, S.; Toenhake, C.G.; Schmitt, M.; Sabitzki, R.; Bergmann, B.; Fröhlke, U.; Mesén-Ramírez, P.; Blancke Soares, A.; Herrmann, H.; Bártfai, R.; Spielmann, T.A. Kelch13-defined endocytosis pathway mediates artemisinin resistance in malaria parasites. Science, 2020, 367(6473), 51-59.
[http://dx.doi.org/10.1126/science.aax4735] [PMID: 31896710]
[63]
Bridgford, J.L.; Xie, S.C.; Cobbold, S.A.; Pasaje, C.F.A.; Herrmann, S.; Yang, T.; Gillett, D.L.; Dick, L.R.; Ralph, S.A.; Dogovski, C.; Spillman, N.J.; Tilley, L. Artemisinin kills malaria parasites by damaging proteins and inhibiting the proteasome. Nat. Commun., 2018, 9(1), 3801.
[http://dx.doi.org/10.1038/s41467-018-06221-1] [PMID: 30228310]
[64]
Le, J.; Perez, E.; Nemzow, L.; Gong, F. Role of deubiquitinases in DNA damage response. DNA Repair, 2019, 76, 89-98.
[http://dx.doi.org/10.1016/j.dnarep.2019.02.011] [PMID: 30831436]
[65]
Feng, J.; Xu, D.; Kong, X.; Lin, K.; Yan, H.; Feng, X.; Tu, H.; Xia, Z. Characterization of pfmdr1, pfcrt, pfK13, pfubp1, and pfap2mu in Travelers Returning from Africa with Plasmodium falciparum Infections Reported in China from 2014 to 2018. Antimicrob. Agents Chemother., 2021, 65(7), e02717-20.
[http://dx.doi.org/10.1128/AAC.02717-20] [PMID: 33903109]
[66]
Cheng, W.; Wu, K.; Song, X.; Wang, W.; Du, W.; Li, J. Single-nucleotide polymorphisms of artemisinin resistance-related pfubp1 and pfap2mu genes in imported Plasmodium falciparum to Wuhan, China. Infect. Genet. Evol., 2022, 101, 105286.
[http://dx.doi.org/10.1016/j.meegid.2022.105286] [PMID: 35470127]
[67]
Mu, J.; Myers, R.A.; Jiang, H.; Liu, S.; Ricklefs, S.; Waisberg, M.; Chotivanich, K.; Wilairatana, P.; Krudsood, S.; White, N.J.; Udomsangpetch, R.; Cui, L.; Ho, M.; Ou, F.; Li, H.; Song, J.; Li, G.; Wang, X.; Seila, S.; Sokunthea, S.; Socheat, D.; Sturdevant, D.E.; Porcella, S.F.; Fairhurst, R.M.; Wellems, T.E.; Awadalla, P.; Su, X. Plasmodium falciparum genome-wide scans for positive selection, recombination hot spots and resistance to antimalarial drugs. Nat. Genet., 2010, 42(3), 268-271.
[http://dx.doi.org/10.1038/ng.528] [PMID: 20101240]
[68]
Ye, R.; Tian, Y.; Huang, Y.; Zhang, Y.; Wang, J.; Sun, X.; Zhou, H.; Zhang, D.; Pan, W. Genome-wide analysis of genetic diversity in Plasmodium falciparum isolates from China–Myanmar border. Front. Genet., 2019, 10, 1065.
[http://dx.doi.org/10.3389/fgene.2019.01065] [PMID: 31737048]
[69]
Henrici, R.C.; van Schalkwyk, D.A.; Sutherland, C.J. Modification of pfap2μ and pfubp1 Markedly Reduces Ring-Stage Susceptibility of Plasmodium falciparum to Artemisinin In Vitro. Antimicrob. Agents Chemother., 2019, 64(1), e01542-19.
[http://dx.doi.org/10.1128/AAC.01542-19] [PMID: 31636063]
[70]
Matranga, C.; Tomari, Y.; Shin, C.; Bartel, D.P.; Zamore, P.D. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell, 2005, 123(4), 607-620.
[http://dx.doi.org/10.1016/j.cell.2005.08.044] [PMID: 16271386]
[71]
Setten, R.L.; Rossi, J.J.; Han, S. The current state and future directions of RNAi-based therapeutics. Nat. Rev. Drug Discov., 2019, 18(6), 421-446.
[http://dx.doi.org/10.1038/s41573-019-0017-4] [PMID: 30846871]
[72]
Gheibi-Hayat, S.M.; Jamialahmadi, K. Antisense oligonucleotide (AS‐ODN) technology: Principle, mechanism and challenges. Biotechnol. Appl. Biochem., 2021, 68(5), 1086-1094.
[http://dx.doi.org/10.1002/bab.2028] [PMID: 32964539]
[73]
Gavrilov, K.; Saltzman, W.M. Therapeutic siRNA: Principles, challenges, and strategies. Yale J. Biol. Med., 2012, 85(2), 187-200.
[PMID: 22737048]
[74]
Kowalski, P.S.; Rudra, A.; Miao, L.; Anderson, D.G. Delivering the messenger: Advances in technologies for therapeutic mRNA delivery. Mol. Ther., 2019, 27(4), 710-728.
[http://dx.doi.org/10.1016/j.ymthe.2019.02.012] [PMID: 30846391]
[75]
Adams, D.; Gonzalez-Duarte, A.; O’Riordan, W.D.; Yang, C.C.; Ueda, M.; Kristen, A.V.; Tournev, I.; Schmidt, H.H.; Coelho, T.; Berk, J.L.; Lin, K.P.; Vita, G.; Attarian, S.; Planté-Bordeneuve, V.; Mezei, M.M.; Campistol, J.M.; Buades, J.; Brannagan, T.H., III; Kim, B.J.; Oh, J.; Parman, Y.; Sekijima, Y.; Hawkins, P.N.; Solomon, S.D.; Polydefkis, M.; Dyck, P.J.; Gandhi, P.J.; Goyal, S.; Chen, J.; Strahs, A.L.; Nochur, S.V.; Sweetser, M.T.; Garg, P.P.; Vaishnaw, A.K.; Gollob, J.A.; Suhr, O.B. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med., 2018, 379(1), 11-21.
[http://dx.doi.org/10.1056/NEJMoa1716153] [PMID: 29972753]
[76]
Bezerra, F.; Saraiva, M.J.; Almeida, M.R. Modulation of the mechanisms driving transthyretin amyloidosis. Front. Mol. Neurosci., 2020, 13, 592644.
[http://dx.doi.org/10.3389/fnmol.2020.592644] [PMID: 33362465]
[77]
Si, J.B.; Kim, B.; Kim, J.H. Transthyretin misfolding, a fatal structural pathogenesis mechanism. Int. J. Mol. Sci., 2021, 22(9), 4429.
[http://dx.doi.org/10.3390/ijms22094429] [PMID: 33922648]
[78]
Ueda, M. Transthyretin: Its function and amyloid formation. Neurochem. Int., 2022, 155, 105313.
[http://dx.doi.org/10.1016/j.neuint.2022.105313] [PMID: 35218869]
[79]
Luigetti, M.; Romano, A.; Di Paolantonio, A.; Bisogni, G.; Sabatelli, M. Diagnosis and treatment of hereditary transthyretin amyloidosis (hATTR) polyneuropathy: Current perspectives on improving patient care. Ther. Clin. Risk Manag., 2020, 16, 109-123.
[http://dx.doi.org/10.2147/TCRM.S219979] [PMID: 32110029]
[80]
McRobert, L.; McConkey, G.A. RNA interference (RNAi) inhibits growth of Plasmodium falciparum. Mol. Biochem. Parasitol., 2002, 119(2), 273-278.
[http://dx.doi.org/10.1016/S0166-6851(01)00429-7] [PMID: 11814579]
[81]
Hentzschel, F.; Mitesser, V.; Fraschka, S.A.K.; Krzikalla, D.; Carrillo, E.H.; Berkhout, B.; Bártfai, R.; Mueller, A.K.; Grimm, D. Gene knockdown in malaria parasites via non-canonical RNAi. Nucleic Acids Res., 2019, gkz927.
[http://dx.doi.org/10.1093/nar/gkz927] [PMID: 31680162]
[82]
Baum, J.; Papenfuss, A.T.; Mair, G.R.; Janse, C.J.; Vlachou, D.; Waters, A.P.; Cowman, A.F.; Crabb, B.S.; de Koning-Ward, T.F. Molecular genetics and comparative genomics reveal RNAi is not functional in malaria parasites. Nucleic Acids Res., 2009, 37(11), 3788-3798.
[http://dx.doi.org/10.1093/nar/gkp239] [PMID: 19380379]
[83]
Garrelfs, S.F.; Frishberg, Y.; Hulton, S.A.; Koren, M.J.; O’Riordan, W.D.; Cochat, P.; Deschênes, G.; Shasha-Lavsky, H.; Saland, J.M.; van’t Hoff, W.G.; Fuster, D.G.; Magen, D.; Moochhala, S.H.; Schalk, G.; Simkova, E.; Groothoff, J.W.; Sas, D.J.; Meliambro, K.A.; Lu, J.; Sweetser, M.T.; Garg, P.P.; Vaishnaw, A.K.; Gansner, J.M.; McGregor, T.L.; Lieske, J.C. Lumasiran, an RNAi therapeutic for primary hyperoxaluria type 1. N. Engl. J. Med., 2021, 384(13), 1216-1226.
[http://dx.doi.org/10.1056/NEJMoa2021712] [PMID: 33789010]
[84]
Aimo, A.; Castiglione, V.; Rapezzi, C.; Franzini, M.; Panichella, G.; Vergaro, G.; Gillmore, J.; Fontana, M.; Passino, C.; Emdin, M. RNA-targeting and gene editing therapies for transthyretin amyloidosis. Nat. Rev. Cardiol., 2022, 19(10), 655-667.
[http://dx.doi.org/10.1038/s41569-022-00683-z] [PMID: 35322226]
[85]
Jiang, F.; Doudna, J.A. CRISPR–Cas9 structures and mechanisms. Annu. Rev. Biophys., 2017, 46(1), 505-529.
[http://dx.doi.org/10.1146/annurev-biophys-062215-010822] [PMID: 28375731]
[86]
Torres-Ruiz, R.; Rodriguez-Perales, S. CRISPR-Cas9 technology: Applications and human disease modelling. Brief. Funct. Genomics, 2017, 16(1), 4-12.
[http://dx.doi.org/10.1093/bfgp/elw025] [PMID: 27345434]
[87]
Rosenblum, D.; Gutkin, A.; Kedmi, R.; Ramishetti, S.; Veiga, N.; Jacobi, A.M.; Schubert, M.S.; Friedmann-Morvinski, D.; Cohen, Z.R.; Behlke, M.A.; Lieberman, J.; Peer, D. CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy. Sci. Adv., 2020, 6(47), eabc9450.
[http://dx.doi.org/10.1126/sciadv.abc9450] [PMID: 33208369]
[88]
Foo, J.; Michor, F. Evolution of acquired resistance to anti-cancer therapy. J. Theor. Biol., 2014, 355, 10-20.
[http://dx.doi.org/10.1016/j.jtbi.2014.02.025] [PMID: 24681298]
[89]
Shaikh, M.H.; Clarke, D.T.W.; Johnson, N.W.; McMillan, N.A.J. Can gene editing and silencing technologies play a role in the treatment of head and neck cancer? Oral Oncol., 2017, 68, 9-19.
[http://dx.doi.org/10.1016/j.oraloncology.2017.02.016] [PMID: 28438299]
[90]
Zhao, Y.; Wang, F.; Wang, C.; Zhang, X.; Jiang, C.; Ding, F.; Shen, L.; Zhang, Q. Optimization of CRISPR/Cas system for improving genome editing efficiency in Plasmodium falciparum. Front. Microbiol., 2021, 11, 625862.
[http://dx.doi.org/10.3389/fmicb.2020.625862] [PMID: 33488567]
[91]
Song, X.; Liu, C.; Wang, N.; Huang, H.; He, S.; Gong, C.; Wei, Y. Delivery of CRISPR/Cas systems for cancer gene therapy and immunotherapy. Adv. Drug Deliv. Rev., 2021, 168, 158-180.
[http://dx.doi.org/10.1016/j.addr.2020.04.010] [PMID: 32360576]
[92]
Mirjalili Mohanna, S.Z.; Djaksigulova, D.; Hill, A.M.; Wagner, P.K.; Simpson, E.M.; Leavitt, B.R. LNP-mediated delivery of CRISPR RNP for wide-spread in vivo genome editing in mouse cornea. J. Control. Release, 2022, 350, 401-413.
[http://dx.doi.org/10.1016/j.jconrel.2022.08.042] [PMID: 36029893]
[93]
Aziz, A.; Rehman, U.; Sheikh, A.; Abourehab, M.A.S.; Kesharwani, P. Lipid-based nanocarrier mediated CRISPR/Cas9 delivery for cancer therapy. J. Biomater. Sci. Polym. Ed., 2023, 34(3), 398-418.
[http://dx.doi.org/10.1080/09205063.2022.2121592] [PMID: 36083788]
[94]
Yu, S.; Wang, J.; Luo, X.; Zheng, H.; Wang, L.; Yang, X.; Wang, Y. Transmission-blocking strategies against malaria parasites during their mosquito stages. Front. Cell. Infect. Microbiol., 2022, 12, 820650.
[http://dx.doi.org/10.3389/fcimb.2022.820650] [PMID: 35252033]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy